
1

VRIJE UNIVERSITEIT

Neuro-Evolution for
Emergent Specialization
in Collective Behavior

Systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. L.M. Bouter,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen

op vrijdag 6 maart 2009 om 10.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

Geoffrey Stuart Nitschke



Promotor: Prof.dr. A.E. Eiben
Co-promotor: Dr. M.C. Schut



Promotiecommissie:

Prof.dr. K. De Jong
Prof.dr. D. Floreano
Prof.dr. F. Groen
Prof.dr. W. Kowalczyk
Prof.dr. J. Treur



CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1 Approach and Objectives . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Research Goals and Hypotheses . . . . . . . . . . . . . . . . . . . 11
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Neuro-Evolution for Controller Design . . . . . . . . . . . . . . . 13
1.5 Solving Collective Behavior Tasks . . . . . . . . . . . . . . . . . . 14

2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Specialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Types of Specialization . . . . . . . . . . . . . . . . . . . 16
2.1.2 Collective Behavior Tasks Requiring Specialization . . . . 17
2.1.3 Measuring Specialization . . . . . . . . . . . . . . . . . . 19

2.2 Collective Behavior Models of Specialization . . . . . . . . . . . . 23
2.2.1 Reinforcement Learning Models . . . . . . . . . . . . . . . 23
2.2.2 Division of Labor Models . . . . . . . . . . . . . . . . . . 23
2.2.3 Mathematical, Economic and Game Theory . . . . . . . . 24
2.2.4 Competitive and Cooperative Co-Evolution . . . . . . . . 24
2.2.5 Learning Classifier Systems . . . . . . . . . . . . . . . . . 27

2.3 Neuro-Evolution (NE) . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Conventional Neuro-Evolution Methods . . . . . . . . . . 28
2.3.2 Encoding Schemes for Neuro-Evolution . . . . . . . . . . 31
2.3.3 Neuro-Evolution and Cooperative Co-Evolution . . . . . . 31

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3. Collective Neuro-Evolution Method . . . . . . . . . . . . . . . . . . . . 36
3.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Population Structure . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Genotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Specialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Degree of Specialization . . . . . . . . . . . . . . . . . . . 39
3.2.2 Specialization Distance Metric . . . . . . . . . . . . . . . 41
3.2.3 Degree of Specialization Threshold . . . . . . . . . . . . . 41
3.2.4 Specialization Similarity Threshold . . . . . . . . . . . . . 41

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Evaluate all Genotypes . . . . . . . . . . . . . . . . . . . 43
3.3.2 Evaluate Elite Controllers . . . . . . . . . . . . . . . . . . 44



Contents 5

3.4 Selection and Variation . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 Elite Selection . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Sub-Population Selection . . . . . . . . . . . . . . . . . . 45
3.4.3 Recombination Operators . . . . . . . . . . . . . . . . . . 46
3.4.4 Mutation Operator . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Adaptation of Algorithmic Parameters . . . . . . . . . . . . . . . 47
3.5.1 Specialization for Regulating Recombination . . . . . . . 47
3.5.2 Recombinations for Regulating Recombination . . . . . . 47

3.6 Adapting Controller Size . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 CONE Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.8 CONE and Related Methods . . . . . . . . . . . . . . . . . . . . 50
3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4. Collective Behavior Case Study: Pursuit-Evasion Task . . . . . . . . . 53
4.1 Pursuit-Evasion Task . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Parameters and Experimental Setup . . . . . . . . . . . . . . . . 57
4.3 Shaping Prey Behavior: Controller Evolution . . . . . . . . . . . 58
4.4 Pursuit-Evasion Experiments . . . . . . . . . . . . . . . . . . . . 61

4.4.1 Evolving Prey-Capture Behavior . . . . . . . . . . . . . . 61
4.5 Evolved Prey-Capture Behaviors and Task Performances . . . . . 62

4.5.1 HomCNE / HetCNE Evolved Behavior: Entrapment . . . 63
4.5.2 CCGA / Multi-Agent ESP Evolved Behavior: Pursuer-

Blocker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.3 CCGA / Multi-Agent ESP / CONE Evolved Behavior:

Spiders-Fly . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.4 CONE Evolved Behavior: Role-Switcher . . . . . . . . . . 65
4.5.5 Pursuit-Evasion Experiments Testing Two Prey . . . . . . 66
4.5.6 Statistical Comparison of Task Performance Results . . . 67
4.5.7 The Role of Difference Metrics in CONE . . . . . . . . . . 68

4.6 Specialized Behaviors Analysis . . . . . . . . . . . . . . . . . . . 69
4.6.1 Reverse Engineering Observed Predator Behaviors . . . . 70
4.6.2 Reproducing Individual Predator Behaviors . . . . . . . . 71
4.6.3 Reproducing Collective Prey-Capture Behaviors . . . . . 71
4.6.4 Measuring Behavioral Specialization . . . . . . . . . . . . 72
4.6.5 Validating the Role of Behavioral Specialization . . . . . 73
4.6.6 Prey-Capture Behavior Lesion Study . . . . . . . . . . . . 75

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5. Collective Behavior Case Study: Multi-Rover . . . . . . . . . . . . . . 78
5.1 Multi-Rover Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 Multi-Rover Simulation Environments . . . . . . . . . . . 79
5.1.2 Rovers in the Simulation Environment . . . . . . . . . . . 79
5.1.3 Lander (Base station) . . . . . . . . . . . . . . . . . . . . 79
5.1.4 Red Rock Distribution . . . . . . . . . . . . . . . . . . . . 80
5.1.5 Collective Behavior for Red Rock Detection . . . . . . . . 80

5.2 Rovers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Contents 6

5.2.1 Red Rock Detection Sensors . . . . . . . . . . . . . . . . . 83
5.2.2 Rover Detection Sensors . . . . . . . . . . . . . . . . . . . 84
5.2.3 Artificial Neural Network Controller . . . . . . . . . . . . 86
5.2.4 Movement Actuators . . . . . . . . . . . . . . . . . . . . . 86
5.2.5 Heuristic Controller . . . . . . . . . . . . . . . . . . . . . 87
5.2.6 Specialization in the Multi-Rover Task . . . . . . . . . . . 87

5.3 Multi-Rover Experimental Design . . . . . . . . . . . . . . . . . . 88
5.3.1 Rover Team Fitness Evaluation . . . . . . . . . . . . . . . 89
5.3.2 Simulation and Neuro-Evolution Parameters . . . . . . . 90
5.3.3 Experimental Setups for Neuro-Evolution Methods . . . . 93

5.4 Multi-Rover Task Results . . . . . . . . . . . . . . . . . . . . . . 94
5.4.1 Experiment Set 1: Environments Appropriate for Behav-

ioral Specialization . . . . . . . . . . . . . . . . . . . . . . 95
5.4.2 Experiment Set 2: Teams Evolved within the Complex

Environment Set . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.3 Experiment Set 3: Teams Evolved within the Extended

Complex Environment Set . . . . . . . . . . . . . . . . . . 100
5.5 Discussion of Multi-Rover Experimental Results . . . . . . . . . . 104

5.5.1 Behavioral Specialization in the Multi-Rover Task . . . . 104
5.5.2 Analysis of Evolution in Complex Environments . . . . . 105
5.5.3 Rover Caste Lesion Study . . . . . . . . . . . . . . . . . . 106
5.5.4 Validating the Role of Behavioral Specialization . . . . . 107
5.5.5 The Role of Difference Metrics in CONE . . . . . . . . . . 115

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6. Collective Behavior Case Study: Gathering and Collective Construction118
6.1 Gathering and Collective Construction (GACC) Task . . . . . . . 119

6.1.1 Specialization in the GACC Task . . . . . . . . . . . . . . 119
6.1.2 GACC Simulation Environments . . . . . . . . . . . . . . 120
6.1.3 Complex Object Construction . . . . . . . . . . . . . . . . 123

6.2 Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2.1 Object/Obstacle Detection Sensors . . . . . . . . . . . . . 124
6.2.2 Detection of Other Robots . . . . . . . . . . . . . . . . . 128
6.2.3 Object Demand Sensors . . . . . . . . . . . . . . . . . . . 128
6.2.4 Home Area Detection . . . . . . . . . . . . . . . . . . . . 130
6.2.5 Movement Actuators . . . . . . . . . . . . . . . . . . . . . 130
6.2.6 Object Gripper . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2.7 Artificial Neural Network Controller . . . . . . . . . . . . 132
6.2.8 Heuristic Behavior . . . . . . . . . . . . . . . . . . . . . . 132

6.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3.1 Team Fitness Evaluation . . . . . . . . . . . . . . . . . . 135
6.3.2 Simulation and Neuro-Evolution Parameters . . . . . . . 136
6.3.3 Evolution of Collective Behavior . . . . . . . . . . . . . . 136

6.4 Task Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.4.1 Experiment Set 1: Evolving Teams in Simple Environments141



Contents 7

6.4.2 Experiment Set 2: Shaping of Teams in Complex Envi-
ronments . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4.3 Comparing Task Performances of Teams Evolved in Sim-
ple versus Complex Environments . . . . . . . . . . . . . 144

6.5 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5.1 CCGA, Multi-Agent ESP, and CONE for Behavioral Spe-

cialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.5.2 CNE for Behavioral Specialization . . . . . . . . . . . . . 146
6.5.3 The Role of Castes . . . . . . . . . . . . . . . . . . . . . . 146
6.5.4 Caste Lesion Study . . . . . . . . . . . . . . . . . . . . . . 147
6.5.5 Validating the Role of Behavioral Specialization . . . . . 150
6.5.6 The Role of Difference Metrics in CONE . . . . . . . . . . 152

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7. Discussion and Future Directions . . . . . . . . . . . . . . . . . . . . . 154
7.1 Evolving Controllers in Collective Behavior Systems . . . . . . . 154

7.1.1 Contributions of CONE . . . . . . . . . . . . . . . . . . . 154
7.1.2 Emergent Specialization and CONE . . . . . . . . . . . . 155
7.1.3 Neuro-Evolution as a Controller Design Method . . . . . 156

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.2.1 A General Specialization Metric . . . . . . . . . . . . . . 156
7.2.2 Introducing Plasticity into the CONE Architecture . . . . 157

Appendix A: Statistical Comparisons in the Pursuit-Evasion Task . . . . 159

Appendix B: Emergent Behaviors in the Pursuit-Evasion Task . . . . . . 162

Appendix C: Statistical Comparisons in the Multi-Rover Task . . . . . . . 169

Appendix D: Statistical Comparisons in the GACC Task . . . . . . . . . . 190

Appendix E: Experiments and Neuro-Evolution Parameters . . . . . . . . 209

Appendix F: Predator Heuristic Controller . . . . . . . . . . . . . . . . . 212

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Samenvatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219



1. INTRODUCTION

Specialization is observable in many complex adaptive systems1 and is thought
to be a fundamental mechanism in many complex adaptive systems in order to
achieve optimal efficiency. In complex ecological communities, specializations
have evolved over time as a means of diversifying the community in order to
adapt to the environment [151]. Over the course of evolutionary time, spe-
cialization in biological communities has assumed both morphological [180] and
behavioral forms [19]. For example, morphologically specialized castes have
emerged in certain termite colonies [117], and honey bees dynamically adapt
their foraging behavior for pollen, nectar, and water as a function of individual
preference and colony demand [26]. The consequence of such specializations is
that labor is efficiently divided between specialized castes and individuals for
the benefit of accomplishing group tasks. In such a sense, specialization is an
adaptive mechanism in a complex adaptive system.

This thesis introduces the Collective Neuro-Evolution (CONE) method. This
method is designed to derive sets of Artificial Neural Network (ANN) con-
trollers2 operating for the purpose of solving multi-agent tasks. Such tasks
are herein referred to as collective behavior tasks given that the behaviors of
multiple agents collectively interacting is required in order to derive solutions.

An example is the Gathering and Collective Construction (GACC) task
[115]. This task requires a group of robots to search a given environment for
objects of different types. Object types are defined by color. In this exam-
ple the object types are: red, blue, and green. This particular task example
requires that green objects be gathered first, blue objects be gathered second,
and red objects be gathered last. The term gathered refers to the discovery
and subsequent transportation of an object by robots to a home area in the
environment. Green objects can be gathered by individual robots. However,
blue objects require two robots in order to gather, and red objects require three
robots in order to gather. Task performance is measured according to how fast
the robots can gather all the objects in the correct sequence. One method of op-
timally accomplishing this task is for most robots to specialize to gathering the
next object type in the sequence, where such an object is also the most scarce

1 Examples of complex adaptive systems include social insect colonies, biological neural
networks, traffic jams, economies of a nation, as well as industrial infrastructures such as
energy and telecommunications networks [142].

2 The terms ANN and controller are used interchangeably throughout the thesis. However,
the term ANN controller refers to a simulated (software) or embodied (robotic) entity designed
to operate in a given environment and perform a given task. Such an entity uses a neural
computation process [70] in order to map its sensory inputs to motor outputs.



1. Introduction 9

in the environment. Simultaneously, other robots would specialize to gathering
object types that are next in the required sequence, where such objects are pro-
gressively less scarce. This approach assumes that the robots are aware of the
required sequence of object types, and will thus wait until the required object
types have been delivered before a newly gathered object is delivered. Hence,
the GACC collective behavior task requires that at any given time, a particu-
lar portion of the robot group specialize to gathering each of the object types,
where these portions collectively produce an optimal gathering behavior.

The CONE method is specifically designed to facilitate and utilize behav-
ioral specialization3 as a problem solving mechanism in collective behavior tasks.
CONE increases collective behavior task performance or attains collective be-
havior solutions that could not otherwise be derived without specialization.
CONE utilizes a set of ANN controllers as its problem solving substrate and
artificial evolution [43] as the method for developing specific solutions. CONE
is currently limited to the use of simple ANN controllers with a static number
of input and output neurons and a single hidden layer. However, the relaxing
of these limitations will be discussed in chapter 7.

1.1 Approach and Objectives

In this thesis, an artificial collective behavior system is a simulated (software
based multi-agent) system, where components of the system interact in order to
solve a collective behavior task. The design of such artificial collective behavior
systems draws inspiration from nature. Artificial collective behavior systems
often replicate desirable behaviors exhibited in biological collective behavior
systems. Examples of biological collective behavior systems include complex
ecological communities such as social insect colonies [151], [26], [19], biologi-
cal neural networks [9], multi-cellular organisms [66], economies of a nation,
companies and other business organizations [1], [106].

In fields of research such as artificial life [86], multi-robot systems [150],
neural computation [70] and evolutionary computation [43], it is highly desirable
to reproduce the underlying mechanisms that result in replicating the success
of biological collective behavior systems. One such underlying mechanism is
emergent specialization. Specialization is either behavioral or morphological
and for the purposes of designing collective behavior systems is either specified
a priori or is an emergent property4 of the system.

Given that sets of controllers are applied to solve a collective behavior task,
it is feasible that emergent specialization increases the task performance of the
controllers. Specifically, specialization that results (emerges) from the evolution
(design) of an individual controller, or emerges from the interactions of mul-
tiple controllers may be used as part of a collective behavior problem solving

3 Behavioral specialization as opposed to morphological specialization [113].
4 The term emergent property is used interchangeably with emergent behavior. Both refer

to any computation that achieves global affects, formally or stochastically, via working within
a bounded number of neighbors and without the use of global visibility [47].



1. Introduction 10

process. In the study of collective behavior systems within a broad range of
research fields [21, 88, 149, 137], emergent specialization is typically not used
as a problem solving mechanism, but rather emerges as an ancillary result of
the system accomplishing its given task. With a few notable exceptions such as
Zhang, Martinoli and Antonsson [202], and Bugajska and Schultz [22], the role
of emergent morphological specialization in collective behavior problem solving
has not been widely studied. This is consequent of the engineering challenges
and inherent complexities of dynamically creating morphologically specialized
robots and computer hardware components, that represent effective solutions to
emerging challenges in a physical task environment [90, 130, 133, 178]. Given the
complexity of issues that must be addressed in designing methods that evolve
(or otherwise manufacture) collective behavior systems that use morphological
specializations, this research focuses on collective behavior systems that derive
emergent behavioral specialization as part of a controller design process.

Hence, emergent behavioral specialization is beneficial to, and often nec-
essary for solving collective behavior tasks. That is, many collective behavior
tasks benefit from, or require, sets of agents adopting complementary specialized
problem solving behaviors in order to solve. In line with state of the art methods
for ANN controller design [60, 49], this research uses Neuro-Evolution (NE) as
a means of adapting a set of agents (ANN controllers) that are given the goal
of solving a collective behavior task. CONE is a novel controller design method
that addresses a gap in current state of the art controller design methods. Cur-
rently, specialization emerges as a side effect of controller design methods that
solve collective behavior tasks. A controller design method that solves given
collective behavior tasks via purposefully facilitating and using emergent be-
havioral specialization is currently lacking. CONE explicitly uses specialization
that emerges as part of a controller design process in order to solve collective
behavior tasks. Thus, the general research objective is defined as follows.

Define a controller design method that facilitates and uses emergent behav-
ioral specialization such that any given collective behavior task is solved.

A cooperative co-evolution approach is employed in order to collectively
derive, evaluate, and adapt sets of controllers for the purpose of solving collective
behavior tasks. This cooperative co-evolution approach is formalized as the
CONE method (chapter 3). Specific to CONE is the method’s capability to
dynamically identify the degree of behavioral specialization required by the given
collective behavior task. An appropriate degree of behavioral specialization
is then facilitated for each controller in a set of controllers that are working
collectively. The purpose of such effectuated behavioral specialization is for the
set of controllers to increase their collective behavior task performance, or to
achieve a collective behavior solution that could not otherwise be achieved.

In this research a set of collective behavior tasks that benefit from a problem
solving approach that uses behavioral specialization are identified. Such collec-
tive behavior tasks are those that are most effectively solved by each agent
(in an agent group) adopting a complementary behavioral role. In such tasks



1. Introduction 11

(chapters 4, 5, and 6), the interactions of specialized behaviors accomplishes
collective behavior tasks with a near optimal performance.

Collective behavior case studies described demonstrate that CONE derives
a degree of behavioral specialization that is appropriate for achieving a higher
task performance, comparative to related controller design methods (chapter
2). Related controller design methods were selected given that such methods
are applicable to collective behavior tasks and are appropriate for deriving both
behaviorally specialized and non-specialized controllers.

1.2 Research Goals and Hypotheses

Given the need for a controller design method that explicitly facilitates and
uses emergent specialization as a means of solving collective behavior tasks, the
following research goals are formulated.

Research Goal 1: To demonstrate the viability of a controller design method
that solves collective behavior tasks via effectuating and leveraging be-
havioral specialization as part of controller design and problem solving.

Research Goal 2: To evaluate a novel controller design method (CONE: Collec-
tive Neuro-Evolution), where CONE accomplishes research goal 1.

Given the second research goal, the following hypotheses are formulated.

Hypothesis 1: CONE facilitates emergent behavioral specialization in a set of
ANN controllers, where such specialization contributes to solving (or in-
creasing task performance in) a given collective behavior task.

Hypothesis 2: Difference metrics defined as part of the CONE architecture, that
adaptively regulate genotype recombination between populations, encour-
age the evolution of a degree of behavioral specialization in ANN con-
trollers appropriate for achieving a higher collective behavior task perfor-
mance comparative to related NE methods.

Each hypothesis as well as the overall efficacy of CONE as a controller design
method for collective behavior systems is comparatively tested with four related
methods. These are, HomCNE: Homogenous Conventional Neuro-Evolution,
HetCNE: Heterogenous Conventional Neuro-Evolution (section 2.3.1), CCGA:
Cooperative, Co-evolutionary Genetic Algorithm (section 2.3.3), and Multi-Agent
ESP: Multi-Agent Enforced Sub-Populations (section 2.3.3).

1.3 Contributions

The main contributions of this research are outlined in the following.

1. Collective Neuro-Evolution: The Collective Neuro-Evolution (CONE) con-
troller design method. CONE derives sets of controllers for the purpose
of solving collective behavior tasks.



1. Introduction 12

2. Emergent Specialization as a Problem Solver: CONE dynamically and
purposefully derives sets of behaviorally specialized controllers, where the
interactions of these controllers potentially results in a near optimal col-
lective behavior task performance. As an important part of the controller
design process, the CONE method identifies if a given collective behavior
task benefits from emergent behavioral specialization. CONE then derives
controllers that exhibit a degree of behavioral specialization appropriate
for accomplishing the given collective behavior task.

3. Difference Metrics: CONE includes behavioral specialization (section 3.2.2)
and genotype (section 3.1.2) difference metrics. Genotype and behavioral
difference metrics have been proposed in previous research such as that of
Wineberg and Oppacher [190] and Balch [10]. However, these difference
metrics identify and propagate beneficial specialized controller behaviors
as part of the cooperative co-evolutionary process used by CONE. Spe-
cialized behaviors are then used as part of the problem solving process.

4. Behavioral Specialization Metric: A metric to measure behavioral special-
ization in controller behavior (section 3.2.1) is defined as a part of CONE.
The specialization metric is applicable to controller behavior that is de-
fined by distinct actions (as in the case of the multi-rover and GACC
tasks) as well as behavior defined by a combination of actions (as in the
case of the pursuit-evasion task).

5. Empirical Evidence: Three collective behavior case studies yield an abun-
dance of empirical data that support the efficacy of CONE.

There are many collective behavior tasks that potentially benefit from apply-
ing CONE. These tasks include multi-robot systems that collectively transport
cumbersome objects [85], [98], [167], [64] multi-robot systems that collectively
construct structures in hazardous or uninhabitable environments, such as un-
derwater habitats or orbiting space stations [183], [182], [181] and multi-robot
systems that collectively survey hazardous or dangerous territories [148], [51],
[150], [5]. Additional tasks include nanobot collective behavior systems designed
for accomplishing manufacturing or medical tasks [28], and interactive multi-
agent computer games designed to train or entertain human players [161].

Given the variety of tasks, in both simulated and physical task environments,
that potentially benefit from behavioral specialization, the provision of CONE
as an automated controller design method is deemed a valuable contribution to
currently deficient controller design methods in collective behavior research.



1. Introduction 13

1.4 Neuro-Evolution for Controller Design

This research supports the notion that NE is an appropriate approach for con-
troller design methods that operate in continuous and partially observable col-
lective behavior task environments. Also, NE is appropriate for purposefully
deriving behavioral specialization within sets of controllers attempting to ac-
complish a collective behavior task. Purposeful derivation refers to controllers
that become behaviorally specialized as a result of the CONE cooperative co-
evolution process (genotype selection, evaluation, regulation and recombination
mechanisms), and in response to task and environment constraints.

NE is the evolution of ANNs using evolutionary algorithms [194], and has
been demonstrated as being beneficial in a disparate range of tasks such as
robot arm control [102], computer processor unit design [56], and rocket control
[59]. NE methods that co-evolve ANN functional units, such as neurons [103]
or complete ANN controllers [136], have shown promising results when applied
to non-Markovian tasks, tasks that are continuous, require memory, have high-
dimensional state spaces, or tasks that are neither effectively addressed via pure
evolutionary or neural computation methods [194].

NE methods have been successfully applied to a disparate range of collec-
tive behavior tasks that include multi-agent computer games [161], [160], [21],
RoboCup soccer [184], pursuit-evasion games [197], [140], and cooperative trans-
port [121] and coordinated movement [141], [13] in simulated multi-robot sys-
tems. Such research examples have demonstrated that cooperative co-evolution
architectures are effective as a means of encouraging a set of specialized and
complementary behaviors. A key advantage of applying NE to controller design
in collective behavior systems is that details about how the task is to be solved
does not need to be specified a priori by the system designer. An analytical
model or otherwise formal specification of the task is not required. Rather, NE
and a simulator are used to derive, evaluate and adapt collective behavior solu-
tions for a given task. Such simulators evaluate ANN controllers using a fitness
ranking of all controller behaviors derived as potential solutions.

CONE extends previous prevalent cooperative co-evolutionary methods that
adapt sets of ANN controllers [102], [136], [56], where such methods are naturally
amenable to solving collective behavior tasks. CONE regulates collective be-
havior dynamics in order to engineer specialization5 for a set of ANN controllers
that are given a collective behavior task. Previous methods have been applied to
derive ANN controllers for the purpose of solving (typically single agent) tasks,
where controllers have minimal a priori knowledge of how to optimally solve the
task. However, current state of the art controller design methods (when applied
to collective behavior tasks), do not utilize emergent specialization as a problem
solving mechanism. Hence, when current controller design methods are applied
to solve collective behavior tasks that benefit from or require specialization, an
optimal task performance (or in some cases: any collective behavior solution)
will not be possible.

5 For a comprehensive review of the role of emergent specialization in collective behavior
systems refer to Nitschke et al. [113].



1. Introduction 14

1.5 Solving Collective Behavior Tasks

Three collective behavior tasks were selected to test the efficacy of CONE as a
controller design method. Each task requires a different form of behavioral spe-
cialization in order to solve, and each task is incrementally complex. Each task
benefits from controllers that adopt complementary behavioral specializations
as part of a collective behavior problem solving process, and each is implemented
in a continuous simulation environment. Also, controllers operate with incom-
plete sensory information, and minimal a priori information as to how to solve
the task. The selected tasks are delineated in the following.

• Pursuit-Evasion: This task requires that a team of simulated pursuer
robots derive a prey-capture behavior. A prey-capture behavior is a collec-
tive behavior formed by multiple pursuer robots, where such a behavior
immobilizes a simulated evader robot. The goal of the controller design
method is to evolve a set of individual specialized pursuer behaviors, where
the interaction of these behaviors results in a prey-capture behavior. The
pursuit evasion task evolves between two and six robot controllers.

• Multi-Rover: This task requires that a team of simulated autonomous
vehicles (rovers) maximize the value of features of interest detected over
the course of their lifetimes in an unexplored simulation environment. In
the multi-rover task, the behavioral roles required to solve the task are
pre-defined. Each rover controller produces several motor outputs, where
each output corresponds to a distinct behavioral role. The goal of the
controller design method is to evolve controllers specialized to different
behaviors, such that the interactions of these behaviors results in an effec-
tive collective behavior. The multi-rover task evolves 20 rover controllers.

• Gathering and Collective Construction (GACC): This task requires that
a team of simulated robots gather a set of atomic objects within an un-
explored simulation environment. The robots must deliver these atomic
objects in a predefined order to a home area. A specific delivery order
is required so that complex objects are constructed from sets of gath-
ered atomic objects. The behavioral roles required to solve the task are
pre-defined, meaning that each robot controller produces several motor
outputs, where each output corresponds to a distinct behavioral role. The
goal of the controller design method is to derive a set of behaviorally spe-
cialized controllers, where the interactions of these controllers produces
an effective collective behavior. The gathering and collective construction
task evolves 30 robot controllers.

These collective behavior tasks were not selected as realistic multi-robot
simulations that yield controller design solutions that are transferable to phys-
ical multi-robot systems. Rather, the pursuit-evasion, multi-rover, and GACC
tasks provide a set of metaphorical examples that demonstrate the efficacy of
CONE as a collective behavior controller design method that is able to leverage
emergent behavioral specialization as a problem solving mechanism.



2. RELATED WORK

This chapter presents a survey of controller design methods that use behavioral
specialization in order to solve collective behavior tasks. This literature review
draws attention to behavioral specialization that emerges as a result of collec-
tive behavior system dynamics, where such emergent specialization is used as
a problem solver. Section 2.1 overviews different types of specialization, collec-
tive behavior tasks that require specialization, and methods used to define and
measure specialization in biological and artificial collective behavior systems.
Section 2.2 delineates several prevalent research examples that model specializa-
tion in artificial collective behavior systems. Section 2.3 identifies and describes
Neuro-Evolution (NE) and cooperative co-evolution as being appropriate for de-
signing controllers that use behavioral specialization in order to solve collective
behavior tasks. Section 2.4 draws conclusions from the literature review.

2.1 Specialization

In complex ecological communities, specializations have evolved over time as
a means of diversifying the community in order to adapt to the environment
[151]. Over the course of evolutionary time, specialization in biological com-
munities has assumed both morphological [180] and behavioral forms [19]. For
example, the morphologically specialized castes that have emerged in certain
termite colonies [117], and honey bees that dynamically adapt their foraging
behavior for pollen, nectar, and water as a function of individual preference and
colony demand [26]. The consequence of such specializations is that labor is
efficiently divided between specialized castes and individuals for the benefit of
accomplishing group tasks. In such a sense, specialization can be viewed as an
adaptive mechanism in a complex adaptive system1.

Many artificial collective behavior systems have used design principles which
draw their inspiration from examples of specialization in nature. Such examples
include complex ecological communities such as social insect colonies [117], [180],
[151], [26], [19], [18], biological neural networks [9], multi-cellular organisms [66],

1 The benefits of specialization in terms of division of labor have been demonstrated in
a broad range of disciplines. For example, in The Wealth of Nations [155], Adam Smith
described economic specialization in terms of division of labor. Stating that in industrialism,
division of labor represents a qualitative increase in productivity, and regarded its emergence
as the result of a dynamic engine of economic progress. Smith viewed specialization by workers
as leading to greater skill and greater productivity for given tasks, which could not be achieved
by non-specialized workers attempting to accomplish those same tasks.



2. Related Work 16

Automated
Design of
collective
behavior
solutions

Em
er

ge
nt


N

on
-E

m
er

ge
nt



Behavioral       Morphological

Fig. 2.1: Types of Specialization in Artificial Collective Behavior Systems. The top left-hand
side quadrant defines the scope of this thesis. Specifically, adaptive systems that use
heterogenous or homogenous design approaches with the aim of deriving emergent
behavioral specialization for solving collective behavior tasks.

economies of a nation, companies, and other business organizations [142], [1],
[106]. Biologically inspired design principles are especially prevalent in multi-
robot [140] swarm intelligence [17] and artificial life systems [108] where it is
highly desirable to replicate the success of biological collective behavior systems.

2.1.1 Types of Specialization

Specialization in collective behavior systems has been studied from many dif-
ferent perspectives that include simulated multi-robot systems that use behav-
ioral specialization to enable cooperative transport [122], pursuit-evasion tasks
where pursuer agents use complementary behavioral specializations in order to
form collective pursuit behaviors [67], RoboCup soccer simulations where soccer
agents use different behaviors in order to form effective team behaviors [184],
and multi-agent computer games where agents use various behaviors in order
to derive collective behavior game playing strategies [21]. Within collective be-
havior literature, specialization is either studied as an emergent property of the
system, or is explicitly pre-programmed into the systems components. With
notable exceptions such as [52], there are few examples of research that success-
fully specifies, a priori, what exactly the behavior of system components should
be, in order to produce a specifically desired, yet emergent collective behavior.



2. Related Work 17

Emergent versus Non-Emergent Specialization

Emergent specialization is that which emerges from the interaction of system
components in response to a dynamic task that requires varying degrees, or
types of specialization, in order to accomplish. Such approaches are useful
in collective behavior task domains where one does not know, a priori, the
degree of specialization required to optimally solve the given task [161], [176],
[55], [140], [104]. Non-emergent specialization is that which is explicitly pre-
specified to be a part of the design of system components and global behavior
of a system. Such approaches are either static, or use learning algorithms so
as to ascertain which type of behavioral specialization, selected from a given
set, is most appropriate for solving a given task. Such approaches are useful for
solving collective behavior tasks that require specialization, where the degree of
specialization required can be sufficiently described a priori [7], [11], [12].

Morphological versus Behavioral Specialization

It is possible to further categorize specialization into two distinct classes: mor-
phological [96], [202] and behavioral [88], [18].

The termmorphological specialization is applicable to situated and embodied
agents, operating in simulated or physical task environments, with embodiment
(sensors and actuators) structured so as to yield an advantage at task accom-
plishment [178], [177], [179]. Examples of morphological specialization include
the evolution of optimal arrangements of sensors and actuators in the design
of simulated automobiles [96], [202], evolution of agent morphologies and con-
trollers for various forms of motion in simulated environments [153], evolution
of physical electric circuits for control [174], and evolving robot morphology for
accomplishing different forms of physical motion [90].

Behavioral specialization is applicable to agent behaviors that are advanta-
geous for accomplishing specific types of tasks [11], [12], [125], [124]. An example
is the use of machine learning methods that activate certain behaviors with a
particular frequency as a response to dynamically arising tasks [55].

2.1.2 Collective Behavior Tasks Requiring Specialization

In the design of collective behavior systems, it remains an open research question
as to which tasks are most appropriately solved using specialization. However,
there is some agreement amongst researchers that if the task can be naturally
decomposed into a set of complementary sub-tasks then specialization is often
beneficial for increasing collective task performance [6], [7], [11], [12]. The fol-
lowing list enumerates several collective behavior task domains. Each of these
task domains mandates some degree of collective behavior, where specialization
is beneficial for improving task performance.

• Collective Gathering. Collective gathering is a task domain characterized
by the social insect metaphor. Collective gathering tasks seek to emulate



2. Related Work 18

the success and efficiency of social insects in gathering resources. Col-
lective gathering tasks have been studied in the context of both physical
multi-robot systems [83], [97], and simulated multi-robot systems [75],
[89], as well as artificial life simulations [131], [37].

• Collective Construction. Collective construction is a task domain charac-
terized by the social insect metaphor. Collective construction tasks have
mainly been studied in the context of artificial life simulations [104], [105],
[170]. Collective construction is typically viewed as an extension of the col-
lective gathering task, in that it requires the agents to construct a partic-
ular structure with gathered resources. Specialization is typically required
for building structures from different types of component resources.

• Collective Resource Distribution and Allocation. Collective resource distri-
bution and allocation is research inspired by social insect societies, where
the goal is to solve optimization tasks that require an optimal distribution
or allocation of resources between agents [19], [18], [172], [27]. Such re-
search studies emergent specialization using behavioral response threshold
methods in simulations of agent groups that are implemented within the
context of mathematical frameworks.

• Collective Communication. Collective communication is a research field
that investigates the evolution of language in artificial collective behavior
systems. This research employs biologically inspired algorithms designed
for the purpose of facilitating a common lexicon in a group of agents.
Artificial language evolution has been investigated in artificial life systems
[78], [94], [77] as well as in physical multi-robot systems [50], [34], [164].
In the context of language evolution, specialization adopts the form of
different agents contributing specialized elements to the lexicon which are
specific to their environmental situation.

• Multi-Agent Computer Games. Recently, there has been particular re-
search interest in the creation of adaptive interactive multi-agent games,
including first-person shooter games [32], [160], as well as strategy games
[21], [143], [193] using artificial evolution and learning as design methods
for agent behavior. However, the study of specialized game playing behav-
iors, in teams of agents, has received relatively little research attention.
Specialization is beneficial since it is often necessary for teams of agents
to formulate collective behavior solutions in order to effectively challenge
a human player, where an increasingly complex agent performance is ex-
pected as game time progresses.

• RoboCup Soccer. A distinct relation to multi-agent game research is
RoboCup [79]. RoboCup is a research field dedicated to the design and
development of multi-robot systems for the purpose of playing a robotic
form of soccer. It is widely recognized as a specific test bed for machine
learning algorithms, and engineering challenges [116]. The very nature of
the RoboCup game demands the existence of several types of behavioral



2. Related Work 19

specialization, in the form of different player roles. Such behaviors must
be complementary and able to interact in such a way so as to produce a
desired global behavior. That is, a team strategy that wins the game in a
competitive scenario. Certain research has focused on machine learning,
evolutionary computation, and NE methods that derive task accomplish-
ing collective behaviors within groups of two or three soccer agents. How-
ever, specialized behaviors of individual soccer agents was either specified
a priori or was derived in simplistic game scenarios [74], [91], [99], [166],
[184]. Each of these research examples has been critiqued elsewhere [111].

• Pursuit-Evasion. Pursuit-evasion is a collective behavior task that is
commonly used within artificial life research to test both non-adaptive
(typically game theoretic) and adaptive (typically learning and evolution)
methods for agent controller design. The task requires that multiple pur-
suer agents derive a collective behavior for the capture of one or more
evading agents [68], [38]. The investigation of emergent specialization
remains a relatively unexplored area of research in the pursuit-evasion
domain [129], collective herding variations [16], [140], as well as more tra-
ditional predator prey systems [107].

• Moving in Formation and Cooperative Transportation. Certain collective
behavior research endeavors, mainly in the fields of simulated [13], [122],
[141] and physical [150], [7] multi-robot systems, have aimed to model and
reproduce various forms of social phenomena that are observable in biolog-
ical systems [144], [201]. Coordinated movement and cooperative trans-
port is sometimes studied within the context of a gathering task, and has
been studied separately in both physical and simulated environments. Co-
operative transport is inspired by biological prey retrieval models, which
present many examples of the value of specialization, such as the pushing
versus pulling behaviors exhibited in stigmatic coordination that allows
several ants to transport a large prey [84].

2.1.3 Measuring Specialization

The scope of this research is concerned with methods that facilitate, measure
and use emergent behavioral specialization as a problem solving mechanism in
collective behavior systems. Hence, the following descriptions are limited to
overviews of collective behavioral specialization metrics.

In collective behavior systems research, specialization is often closely associ-
ated with, and sometimes synonymous with, heterogeneity in collective behavior
systems [10], [140]. Heterogeneity can be hardwired or plastic, and may assume
either behavioral [21], [184], [117] or morphological [149], [202], [128] forms.
Plastic heterogeneity is when an agent group adapts its degree of heterogeneity
as a function of environment and task constraints, where as, hardwired hetero-
geneity is when the degree of heterogeneity in the group remains static [88].
Given this, several metrics for behavioral specialization that are based on pre-



2. Related Work 20

defined heterogeneity and emergent heterogeneity have been proposed. These
behavioral specialization measures assume the following.

• In heterogenous collective behavior systems, a given number of behavioral
roles are predefined. Different agents perform different actions (behaviors),
and the task explicitly requires a set of complementary roles in order to
produce a collective behavior solution. An example of such a collective
behavior system is RoboCup soccer [80].

• In homogenous collective behavior systems, a given number of behavioral
roles are predefined. All agents are able to perform the same set of actions,
and the task does not explicitly require a set of complementary behaviors
in order to derive a collective behavior solution. An example of such a
collective behavior system is collective gathering [10].

Each of the behavioral specialization measures delineated in the following de-
scriptions, are defined according to the goals and perspectives of the researcher
conducting the study. Hence, one can readily find task and environment exam-
ples for when a given specialization measure is not appropriate for effectively or
correctly capturing the nature of behavioral specialization.

Examples of Group Based Specialization Metrics

Example 1: Li, Martinoli and Abu-Mostafa [89]. The authors define specializa-
tion as meaning more than diversity in a group of agents. The authors argue
that when behavioral diversity is obtained via an adaptive process such as learn-
ing or evolution, noise or an inherent bias in the process can lead to behavioral
heterogeneity. However, individual agents in an agent group become specialized
when heterogeneity is utilized in order to increase the performance of collective
behavior solutions derived by the group. That is, specialization is the part of
diversity that is required in order to increase task performance. Hence, the
authors define a specialization metric that is applicable to measuring a degree
of specialization in a group’s collective behavior, and measures the part of di-
versity that enhances group performance. The specialization metric defined in
[89] measures the relationship between collective behavior performance and the
degree of behavioral diversity in the agent group.

Example 2: Waibel, Floreano, Magnenat and Keller [176]. The authors
use artificial evolution within an agent based simulation in order to investigate
the relationship between genotypes and individual behavior and the resulting
dynamics of task specialization and colony productivity. In their agent based
model, each agent is able to perform one of five tasks at any simulation iteration.
An agents propensity to execute a given task is controlled by a stimulus (and
corresponding agent behavioral threshold) associated with the given task. That
is, only a few workers with low thresholds will perform a task when the task
stimulus is very low. As the stimulus level increases, the thresholds of more indi-
viduals are exceeded and those workers begin performing the task. Comparative



2. Related Work 21

methods for the artificial evolution of behavioral thresholds are implemented as a
means of studying the relationship between genetically determined thresholds,
individual behavior, task specialization and overall agent group performance.
Although the authors do not explicitly define a behavioral specialization metric,
their experimental analysis indicates that agents that evolve a lifetime dedica-
tion to one of the five tasks are considered specialized. Hence, specialization
in this research operates at the population level, since complements of different
specialists are selected in response to task and environment constraints.

Example 3: Solow and Szmerekovsky [157]. The authors examine measures
for functional (behavioral) specialization in the context of dynamic linear and
non-linear models. Such models describe groups of individuals that interact in
order to maximize a utility function. The authors define functional specializa-
tion as being related to the amount of time each individual devotes to each
activity in a given task environment. The authors subsequently state that for
linear problems with one optimal solution functional specialization is indicated
if each individual spends 100% of its time on a single activity. For non-linear
models with multiple optimal solutions, the authors state that individuals are
considered specialized if subsets of individuals dedicate all of their time to solv-
ing a set of activities, such that all optimal solutions are achieved.

Examples of Individual Based Specialization Metrics.

The first of the following specialization metrics is taken from biological litera-
ture, and the subsequent measures have been used in artificial life, multi-robot
systems, and collective behavior research. The first metric is included here
since it is a prevalent example of how specialization is measured in biological
collective behavior systems. Also, such specialization measures have provided
inspiration for the derivation of specialization metrics applicable to artificial col-
lective behavior systems (for example, simulated multi-agent systems in artificial
life environments, and physical multi-robot systems in real world environments).

Example 1: O’Donnell and Jeanne [127]. The authors study patterns of
individual forager specialization in response to nest damage in three colonies of
the tropical social wasp Polybia occidentalis. The authors define specialization
of an individual as the entropy of the proportions of its activity over a given
time period. Specifically, the Shannon-Weiner information variable H [29] is
used in order to indicate the degree to which a given individual is specialized
to gathering a given resource. An individual is considered specialized if it has
a low entropy. Low entropy means that an individual focuses on less activities
and devotes most of its work time (> 50%) to gathering one particular resource.

Example 2: Gautrais, Theraulaz, Deneubourg and Anderson [55]. The au-
thors extend the specialization metric of O’Donnell and Jeanne [127]. The
authors stated that the proportions of activity as described by an entropy mea-
sure do not distinguish between an individual that spends half its time on one



2. Related Work 22

Collective Behavior Models of
Specialization

Division of
Labor

Mathematical,
Economic, and
Game Theory

Competitive and
Cooperative
Co-evolution

Reinforcement
Learning

 Learning
Classifier
Systems

Fig. 2.2: Collective Behavior Models of Specialization. These approaches are appropriate for
facilitating specialization in order to solve collective behavior tasks.

task and then switches to another task for the remainder of its lifetime, versus
an individual that repeatedly alternates between two tasks. The specialization
metric defined by Gautrais and Theraulaz [55] thus uses the frequency with
which an agent changes between different tasks. The authors constructed their
simulation such that agents would yield a specialization value between zero and
one. A value equal to zero indicated that an agent switched between each task
with the highest possible frequency and was thus considered a generalist. A
value equal to one indicated that an agent switched between each task with the
lowest possible frequency and thus was considered a full specialist. However,
the authors did not define a threshold value that indicates when an agent stops
being a generalist and becomes a specialist.

Example 3: Murciano, Millan, and Zamora [104, 105]. In this study, the
authors applied Reinforcement Learning methods to a group of homogeneous
agents operating in a discrete simulation environment. A collective gathering
task mandated the utilization of specialized behavior, derived at the individual
agent level. These individual specializations facilitated the emergence of col-
lective behaviors that achieved a near optimal task performance. The learning
task for the agent group was to find, for a given environment, an optimal distri-
bution of specialized agent affinities. An agent was considered specialized if the
probability that it collects an object of a given type is close to one, and the prob-
abilities that it collects objects of other types is close to zero. A distribution of
affinities was considered optimal for a given environment if this set of affinities
resulted in a collective behavior that succeeded in collecting all objects in the
environment. However, in their definition of a behavioral specialization metric,
the authors did not define a threshold for when an agent is specialized versus
when it is not specialized. Instead, agent specialization was defined according
to the experimenter’s interpretation of agent affinities for collecting objects.



2. Related Work 23

2.2 Collective Behavior Models of Specialization

There is some agreement amongst researchers as to the models of specialization
that are appropriate for solving particular collective behavior tasks. The models
illustrated in figure 2.2 do not constitute an exhaustive set, but rather several
examples that have recently received particular research attention. A particular
focus is given to section 2.2.4 given that cooperative co-evolution is an integral
part of the CONE method (chapter 3).

2.2.1 Reinforcement Learning Models

Reinforcement Learning (RL) is a problem where an agent must learn behavior
via trial and error interactions with a dynamic environment [76]. RL methods
have been successfully applied to non-linear and noisy task environments, where
the task is complex and there is no a priori knowledge as to what constitutes an
optimal solution. To solve such tasks, RL methods use statistical and dynamic
programming techniques in order to estimate the utility of taking actions given
different environmental states. Certain RL models provide periodic feedback
signals to agent groups attempting to accomplish a collective behavior task
[168]. A reinforcement signal is either local or global. Local reinforcement
signals are calculated by, and given to a single agent, or a caste [83], upon task
accomplishment. Global reinforcement signals are calculated by and given to
the entire agent group at the end of a RL trial [89]. The main advantage of RL
approaches is that agents are able to effectively operate in complex and noisy
environments, with incomplete information.

However, approaches that utilize only a global reinforcement signal, do not
typically effectuate specialization in the group, even if task performance could
be increased with specialized agents [88]. Approaches that use local reinforce-
ment signals are appropriate for deriving specialized agents, however such ap-
proaches suffer from the credit assignment problem [63] which potentially leads
to sub-optimal collective behavior solutions. Furthermore, RL models have been
highlighted in several studies [25] as performing poorly in multi-agent (collec-
tive behavior) tasks, due to a combinatorial explosion of the state space, and
problems with scalability of RL algorithms [168]. In practice, RL methods do
not scale up to large state spaces and do not perform well in non-Markov tasks
where the state of the environment is not fully observable. This is especially
the case in complex collective behavior tasks.

2.2.2 Division of Labor Models

The use of behavioral threshold and division of labor models, designed with
the goal of optimizing a global task performance, have been investigated within
the context of ant-based [36] and resource allocation [18] models. Such models
typically utilize feedback signals given to agents of the same caste, in order to
encourage emergent specialization for a specific task. Many variations of these
models exist, including those that use evolutionary algorithms [169], [176], and



2. Related Work 24

RL methods [104], [105] in order to derive behavioral threshold values.
Such response threshold models represent a very simple, yet powerful, self-

regulating feedback system that assigns the appropriate number of agents to
different tasks. Studies of such biologically inspired formalizations of behavioral
specialization are worthy of future research attention given their applicability to
a broad range of optimization tasks including dynamic scheduling and resource
allocation. The models of Bonabeau et al. [171], Campos et al. [27], Gautrais
et al. [55], and Bonabeau et al. [18] eloquently demonstrate how behavioral
specialization emerges as a result of self-regulating task assignment and accom-
plishment, for which there exists a large amount of corroborating biological
literature and empirical evidence [31], [30], [145], [36], [173], [126].

Division of labor models are appealing as their evolutionary dynamics and
emergent properties can be described with a mathematical representation and
the results of such models are thus typically amenable to a mathematical anal-
ysis [192]. However, such models are also limited to task domains that can be
completely represented via the mechanics of a mathematical model. This limits
the contributions of such models to optimization tasks that can be formally
represented, or to supporting empirical results in biological literature.

2.2.3 Mathematical, Economic and Game Theory

Linear, non-linear and dynamic models based in mathematical, economic and
game theory [8], [157] have many applications for resource assignment problems
in business. For example, there are a set of mathematical models for solving
task-assignment problems in business. The maximum matching algorithm de-
veloped by Edmonds [42], was designed to determine the maximum number of
people that can be assigned to tasks in such a way that no person is assigned
to more than one task. Thus, it is assumed that each person specializes in
performing at most one task. A generalization of this problem is the resource
assignment problem [95]. Such models are advantageous in that they have prac-
tical applications and their results are amenable to a formal analysis. However,
they are limited by their abstract nature, and assume that the task domain can
be mathematically or otherwise formally represented.

2.2.4 Competitive and Cooperative Co-Evolution

In nature there is a balance of cooperation versus competition for resources be-
tween and within different species as an essential part of the bid for survival2.
The fitness of a given individual changes over time since it is coupled to the
fitness of other individuals of the same and different species inhabiting the same
environment. To explain the coexistence of species, Gause [54] proposed that
species cannot coexist if they occupy the same niche. The term niche refers to a
species’ requirements for survival and reproduction, such as sufficient resources
and habitat conditions. Gause [54] reasoned that if two species had identical

2 For a literature review pertaining to the topic of cooperation versus competition, specifi-
cally emergent cooperation in collective behavior systems, refer to Nitschke [111].



2. Related Work 25

niches, they would attempt to live in the exact same area and would compete for
the exact same resources. If this happened, the more competitive species would
always exclude its competitors from that area. Therefore, different species must
specialize to different niches in order to coexist and increase each individuals
chance of survival in its environment. This phenomenon of co-adaptation within
and between species is referred to as co-evolution [53] and has manifest itself in
the form of increasingly complex competitive and cooperative behaviors [134], as
well as advantageous morphological (phenotype) changes [191] over the course
of evolutionary time3. Natural co-evolution has provided a key source of inspi-
ration for the derivation of co-evolutionary algorithms [187]. In co-evolutionary
algorithms, artificial evolution and task solving performance is improved via
decomposing a given task into a set of composite sub-tasks that are solved by
a composite set of artificial species. These species either compete or cooperate
with each other in order to solve the given task.

Competitive Co-evolution Models

Most research conducted in the context of modeling co-evolution has focused
upon competitive co-evolution systems. Competitive co-evolution systems im-
plement an arms race as a means of producing increasingly effective behaviors
that consistently improve via competition [146], [4], [123], [153], [46]. Such com-
petition is typically for limited resources and occurs between multiple species,
for example, competition between predators and prey. In the research of Nolfi
and Floreano [123] one predator and one prey species are co-evolved, where
the predator controller best able to capture the prey robot is selected from
the predator species, and the prey controller best able to evade the preda-
tor robot is selected from the prey species. The species compete against each
other in order to produce predator and prey controllers that effectively attain
the highest fitness. Competition for an increasingly high fitness results in in-
creasingly complex behaviors. Such competitive co-evolutionary models have
demonstrated that competitive interaction between species aids in maintaining
genetic diversity and often results in superior task performance comparative
to non co-evolutionary approaches. In the context of competitive co-evolution
applied to solving collective behavior tasks, there are relatively few research ex-
amples. D’Ambrosio and Stanley [33] applied the HyperNEAT method to solve
a multiple predator agent, single prey pursuit-evasion task. Similarly, Nitschke

3 Numerous examples of emergent phenotype specializations that result from co-evolution
have been observed in nature. For example, Grant [62] found that different finch species
living on the Galapagos Islands in the Pacific Ocean can coexist if they have traits that allow
them to specialize to particular resources. For example, the Geospiza fuliginosa and Geospiza
fortis finch species have the differing morphological traits of varying beak sizes. Beak size is
a critical trait since it determines the size of a seed that a finch can eat. Individuals with
small beaks eat small seeds, and individuals with large beaks can eat large seeds. Geospiza
fuliginosa specializes upon smaller seeds because it has more individuals with small beaks.
Conversely, Geospiza fortis specializes upon larger seeds because it has more individuals with
large beaks. Thus, the ecological niche [135] occupied by each species differs slightly because
the morphological trait of beak size allows them to specialize to a particular seed size.



2. Related Work 26

[109] applied a co-evolutionary NE method in order to evolve increasingly com-
plex collective prey-capture behaviors, as well as predator-evasion behaviors.
Luke et al. [91] applied genetic programming to co-evolve soccer playing agents
that were eventually able to win a game of RoboCup soccer.

Cooperative Co-evolution Models

Another type of co-evolution model is that which harnesses and utilizes cooper-
ation between species as well as competition between individuals of a species. In
such models, individuals within a species constitute candidate partial solutions
to a complete solution for a given task. Individuals within the same species
compete with each other for the role of the fittest individual, where the fittest
individual is a candidate partial solution. Individuals selected from each species
are then co-evolved in a common task environment, where they collectively form
complete solutions. Individuals from each species that worked well together (as
complete solutions) are then selected for recombination. The fittest complete
solutions are those that best solve the given task.

Potter and De Jong [137] developed a general cooperative co-evolution model
implemented within the context of evolutionary algorithms. One particular in-
stantiation of this generalized model was the Cooperative Co-evolutionary Ge-
netic Algorithm (CCGA). CCGA has applied co-evolving genetic algorithms
to solve function optimization [138] and robot control tasks [139]. CCGA has
since been extended and applied to various machine learning tasks [45], [186].
One prevalent instantiation of Potter’s generalized cooperative co-evolutionary
model is Enforced Sub-Populations (ESP) [56], which co-evolves neurons for the
purpose of constructing effective Artificial Neural Network (ANN) controllers.

Moriarty [102] applied a cooperative co-evolution approach in order to co-
evolve a population of blueprints for ANNs and a population of neuron connec-
tion weights with which to construct ANNs. The population of ANN blueprints
were evaluated based on how well their corresponding neurons (as a complete
ANN) solved a given task. In the other population, neurons received fitness
based upon the number of successful blueprints they participated in.

Drez̃ewski [40], [41] describes a multi-agent system that implements a co-
operative co-evolutionary process that uses two species. The system effectively
solves multi-objective optimization tasks via agents locating the pareto frontier
as a result of co-evolutionary interactions between the two species.

As is the case with competitive co-evolution, there has been relatively lit-
tle research which applies cooperative co-evolution in order to solve collective
behavior tasks. Prevalent examples include the application of ESP to evolving
multi-agent game playing strategies [21], the derivation of prey-capture behavior
in a team of simulated robots [140], [196], [15], [14], the derivation of multi-agent
surveillance behaviors [114], and the evolution of collective gathering and con-
struction behaviors in teams of simulated robots [115].

The advantages of cooperative co-evolution models include versatility and
applicability to a broad range of complex, continuous, and noisy tasks. Also,
the use of multiple genotype populations provides a natural representation for



2. Related Work 27

many collective behavior tasks, and often effectuates emergent specialized phe-
notypes. Cooperative co-evolution models differ from related models that use
multiple interacting populations, as a means of exploring and exploiting niches
in the solution space. A prevalent example is the island model [185], [154],
which has been used primarily to prevent convergence to poor solutions. Island
models do not support interactions between phenotypes in a common task envi-
ronment. Such interactions are integral to cooperative co-evolution models, and
are required for the purposes of co-adaptation of individuals endemic to different
genotype populations, as well as the formation of competitive and cooperative
relationships in both the genotype and phenotype space.

2.2.5 Learning Classifier Systems

Learning Classifier Systems (LCSs) use adaptive mechanisms based on ge-
netic algorithms and reinforcement learning in order to derive a population of
stimulus-response rules (classifiers) that appropriately represent a given prob-
lem space [152]. Individual rules in the population work together to form com-
plete solutions to a given task. A micro-economy model is employed to manage
the interactions of rules, such that the rules place bids for the purpose of be-
coming active. Credit is assigned to rules using the bucket brigade algorithm
[72], which passes a value back along a rule activation chain to rules that aid
in solving the task. The complex dynamics of the micro-economy model re-
sults in emergent problem decomposition and the preservation of rule diversity.
LCSs were initially created to solve problems such as the Animat problem [188].
Many derivatives and variations of LCSs have been proposed since the inception
of LCSs [71]. These include, Michigan style LCSs [73], Pittsburgh style LCSs
[156], Extended Classifier Systems (XCS), Anticipation based LCSs (ALCSs)
[165], and Zeroth-level Classifier Systems (ZCS) [189]. The adaptive mecha-
nisms employed by LCSs use processes of generalization and specialization in
order to produce a population of classifiers that yield effective solutions to given
tasks. That is, an LCS evolves a population of classifiers, such that an effec-
tive balance between sufficiently general and sufficiently specialized classifiers
is derived. Generalized classifiers are those that are applicable to many task
environment conditions. Specialized classifiers are those that are applicable to
specific task environment conditions.

The results of several studies such as Bull et al. [24], Potter et al. [139],
Bull [23], and Hercog and Fogarty [69] have elucidated that LCSs are inherently
appropriate for solving collective behavior tasks [23]. Though not explicitly
stated, the results of such research indicates that the nature of LCSs provide
the potential for effectuating behavioral specialization as a means of attaining
collective behavior solutions. Bull [23] applied a ZCS [189] as an adaptive mech-
anism in a multi-agent trading simulation. Results indicated that the approach
improved the efficiency of individual traders and thus the efficiency of the arti-
ficial market. Bull et al. [24] describe the use of Pittsburgh style [156] classifier
systems for the control of a quadrupedal robot, where each leg is represented
and controlled by a different classifier. Potter et al. [139], used a Pittsburgh



2. Related Work 28

style LCS implemented in the context of a Cooperative Co-evolutionary Genetic
Algorithm (CCGA). The CCGA was used to co-evolve two simulated robots for
a food gathering task, where each robot was controlled by a classifier system and
represented as a separate species. Results indicated faster convergence to an op-
timal solution using the CCGA, comparative to non co-evolutionary approaches.
Hercog and Fogarty [69] presented a multi-agent system that learned, using an
XCS, to solve the El Farol bar problem. Emergent behavior was observed as
part of the XCS learning and multi-agent system dynamics. Specifically, a vacil-
lating agent emerged which did not attain a reward for itself, but enabled other
agents to increase their task performance.

2.3 Neuro-Evolution (NE)

NE is the artificial evolution of Artificial Neural Networks (ANNs) [70] using
evolutionary algorithms [43]. NE operates via searching through a space of
ANN behaviors for a behavior that adequately solves a given task. NE employs
a phylogenetic4 instead of a ontogenetic5 adaptive process. A population of
solutions (ANNs) are modified via the repeated recombination and mutation of
a set of genotypes representing the fittest ANNs. This artificial evolution pro-
cess continues until a sufficiently fit ANN (solution to the given task) is found.
The evolutionary algorithm replaces ontogenetic ANN learning algorithms (for
example, supervised learning) and facilitates adaptation via searching a space
of solutions (encoded ANNs) directly. NE combines and utilizes the advantages
of both ANNs and evolutionary algorithms. That is, NE combines ANN advan-
tages of generalization, function approximation, and temporal capabilities, with
the efficient parallel search capabilities of evolutionary algorithms. Given these
advantages, NE overcomes problems inherit in ANN supervised learning pro-
cesses, given that the weight training process is replaced with an unsupervised
artificial evolution process. In such a process, an optimal set of weights is de-
fined by a fitness function, and the training task is defined by the environment in
which artificial evolution occurs [194]. Furthermore, given that NE is capable of
searching for an ANN behavior, NE methods are beneficial in a disparate range
of complex control problems with continuous and high-dimensional state spaces,
as well as complex tasks that require memory [58]. NE has been demonstrated
as an effective alternative to reinforcement learning methods when applied to
control tasks such as pole balancing and robot arm control [103]. Also, NE is
most appropriately applied to tasks that are neither effectively addressed via
pure evolutionary or neural computation methods [194].

2.3.1 Conventional Neuro-Evolution Methods

Given the multitude and diverse range of NE methods designed to evolve various
ANN properties such as connection weights, network architecture, and learn-

4 Phylogenetic: the development or evolution of a particular group of organisms [39].
5 Ontogenetic: the development of an individual organism from embryo to adult [39].



2. Related Work 29

ing rules [60], [194], there is consequently no canonical Conventional Neuro-
Evolution (CNE) method. Figure 2.3 illustrates an example CNE method which
uses one population of N genotypes. From this population, each genotype is
systematically selected, decoded into an ANN, evaluated in the task environ-
ment and assigned a fitness. During the ANN’s lifetime, it receives sensory input
from its environment, which is propagated though the network so as to produce
a motor output that affects a particular change in the environment. At the end
of its lifetime (or period of evaluation) the ANN is assigned a fitness according
to its performance with respect to accomplishing the task. This fitness is then
assigned back to the corresponding genotype. The evaluation and assignment
of fitness to all ANNs (genotypes) typically constitutes one generation in the
evolutionary process of CNE. At the completion of each generation, the fittest
genotypes are recombined so as to propagate a new population of genotypes.

Figure 2.4 illustrates an example CNE method that uses one genotype pop-
ulation operating in a collective behavior task (a task that requires more than
one ANN in order to accomplish). In this case the genotype space consists of
N genotypes, where M genotypes are selected from the genotype space and de-
coded into M ANNs. One genotype encodes all the parameters of an ANN, and
one ANN represents one phenotype. The M ANN controllers are evaluated to-
gether in the task environment. This evaluation is then passed back in the form
of fitness values to the genotypes that encoded the ANNs. Hence, the ANNs
that perform well in the task have their corresponding genotypes recombined so
as a new fitter set of M ANNs are generated and placed in the task environment
at the next generation of the CNE algorithm.

Either a homogenous or heterogenous approach can be used in order to con-
struct a group of ANNs given the selection of M genotypes from the population.
In order to construct a homogenous group, one of the fittest genotypes is se-
lected from the population, and copied M times, and subsequently decoded
into a group of M ANN clones. Alternatively, in order to construct a heteroge-
nous group, M of the fittest genotypes are selected from the population, and
subsequently decoded into a group of M different ANNs.

There are several disadvantages of CNE approaches. First, as is the case
with evolutionary algorithms [43], as the evolutionary process converges upon
a given ANN solution, diversity in the genotype population is often decreased
to the point where sub-optimal solutions are yielded and fitness progress of
ANN solutions stagnates. Also, given that ANNs are necessarily encoded as
genotypes, where genotypes are recombined and mutated as part of the evo-
lutionary process, the competing conventions problem must be resolved [163],
[194]. There are often different and incompatible encodings for the same phe-
notype (ANN behavior) solution. Hence, in order for genotype recombination
operators, and genotype to phenotype encoding to function properly, a mech-
anism that matches only compatible genotypes for recombination and resolves
differences in encodings for a given ANN, is required. Also, as the complexity
or scale of a given task increases, the number of parameters that need to be
optimized simultaneously increases exponentially.



2. Related Work 30

Task
Environment

Genotype 1

GenotypeN

Genotype 2

...

E
vo

lu
ti

on
ar

y 
A

lg
or

it
hm



Genotype Space

Phenotype Space

Evaluation of neural network behavior

...g0 g1 gn

Neural Network

...g0 g1 gn

...g0 g1 gn

Fig. 2.3: Conventional Neuro-Evolution (CNE). An example CNE method using a single
genotype population. In each genotype, [g0, gn] denotes the n constituent genes.

Task
Environment

Genotype 1

GenotypeN

Genotype 2

...

E
vo

lu
ti

on
ar

y 
A

lg
or

it
hm



Genotype Space Phenotype Space

Evaluation of neural network behaviors

...g0 g1 gn

Neural Network 1

Neural NetworkM
...

...g0 g1 gn

...g0 g1 gn

Fig. 2.4: Conventional Neuro-Evolution (CNE) in a Collective Behavior System. An exam-
ple of CNE operating in a collective behavior task, using a single genotype popula-
tion. Genotype selection may form either a homogenous or heterogenous group of
ANNs. A homogenous group is derived via cloning one selected genotype in order
to derive a set of identical ANNs. A heterogenous group is derived via selecting
and decoding a number of genotypes corresponding to the number of ANNs in the
group. In each genotype, [g0, gn] denotes the n constituent genes.



2. Related Work 31

2.3.2 Encoding Schemes for Neuro-Evolution

The key difference between various NE methods is how ANNs are encoded as
genotypes. The scheme used to encode an ANN as a genotype that can be
manipulated by an evolutionary algorithm and the subsequent decoding of the
genotype into a phenotype (ANN behavior) is either direct or indirect.

In direct encoding, ANN parameters are represented explicitly in the geno-
type as binary or real numbers that are mapped directly to the phenotype [57],
[102]. An indirect encoding scheme operates at an abstract level. An example
of an indirect encoding scheme is the evolution of a set of rules that indirectly
encode an ANN’s parameters. Such parameters include network topology, learn-
ing rules, as well as connection weights [194]. Direct encoding schemes have the
advantage of simplicity in encoding and subsequent decoding schemes. The
disadvantage of direct encoding schemes is that they must be designed for par-
ticular types of task environments. If the task environment is complex and high
dimensional then large genotype populations are requisite for convergence to op-
timal or near optimal solutions. Indirect encoding schemes have the advantage
that the size of the genotype space can be adapted as a function of the complex-
ity of the task environment. If large genotypes are not required for solving a
task, then they will not be specified as such. The capability of indirect encoding
to adapt the structure of the genotype space allows for sufficient variability in
the phenotype space, meaning that a greater spectrum of solutions is possible.

The disadvantage of indirect encoding schemes is that the rules specifying the
growth and development of genotype encodings must be sufficiently general and
powerful so as to allow for the development of genotype encodings appropriate
for a given task environment. The method used to encode ANN parameters
as a genotype significantly influences the dimensions of the solution space as
well as the types of phenotypes that may be decoded and evaluated in the task
environment. ANN parameters that are usually encoded as genotypes include
the connection weights between neurons, the number of hidden layer neurons,
network topology, and the learning rate of an ontogenetic learning algorithm.

2.3.3 Neuro-Evolution and Cooperative Co-Evolution

Prevalent examples of cooperative co-evolution systems implemented within
the context of NE include Symbiotic Adaptive Neuro-Evolution (SANE) [102],
CCGA [136], and the ESP [56] method. SANE and ESP (and one particular case
study using CCGA [136]) combine cooperative co-evolution with NE so that the
search for optimal ANN behaviors is enhanced via a cooperative co-evolution
process. In the context of evolving ANN controllers, figure 2.5 presents the gen-
eral scheme for cooperative co-evolution systems. In methods such as CCGA,
evolution operates at the level of a complete ANN, where as in methods such
as SANE [102], and ESP (section 2.3.3), the evolutionary process operates at
the neuron level. In the case of the latter type of method, a phenotype is the
function performed by a single hidden layer neuron. This is presented as the
bottom (neuron) layer in figure 2.5. In the case of CCGA (section 2.3.3) the



2. Related Work 32

phenotype is the behavior exhibited by a complete ANN. This is presented as
the middle (agent) layer in figure 2.5. It is also conceivable that an evolution-
ary process may operate at the level of agent collectives. That is, where an
individual genotype represents at least two ANNs. This is presented as the top
(collective behavior) layer presented in figure 2.5. This layer does not illustrate
a single genotype representing n ANNs.

ESP: Enforced Sub-Populations

This section describes a NE method known as Enforced Sub-Populations [56].
In ESP, genotypes are represented as individual neurons instead of complete
ANNs. Each genotype is encoded as a string of values that represent input
and output connection weights of a hidden layer neuron. ESP segregates the
genotype space into u sub-populations, where each sub-population evolves each
hidden layer neuron in an ANN. ESP is applicable to the evolution of any type
of ANN that consists of at least one hidden layer [20]. Figure 2.6 illustrates
one generation of the ESP evolutionary process. The hidden layer of an ANN
is constructed via selecting one of the fittest neurons from each of the u sub-
populations. The ANN is then evaluated in a task environment.

Multi-Agent ESP [197] is the application of ESP to collective behavior
tasks. Multi-Agent ESP creates n populations for deriving n ANN controllers.
Each population consists of u sub-populations, where individual ANNs are con-
structed as in ESP. This process is repeated n times for n ANNs, which are
collectively evaluated in a task environment.

Disadvantages of ESP / Multi-Agent ESP

The main disadvantage of ESP is that genotypes within different sub-populations
evolve specializations at the expense of sub-population diversity. This problem
is especially prevalent in tasks that necessitate the use of ANN controllers that
exhibit different specialized behaviors. ESP tends to evolve ANN behaviors
suited for one particular niche in the problem space [56]. In continuous, noisy
and non-linear tasks such as rocket control [59], optimal task performance is
only achievable via co-adaptation of optimally performing specialized neurons.
However, the convergence to sub-optimal neurons is highly probable in sub-
populations which lack a sufficient level of genotype diversity [56]. This in turn
results in the derivation of ANN controllers which do not take full advantage of
specialization and achieve a sub-optimal task performance.

However, the application of Multi-Agent ESP by Yong and Miikkulainen
[197] demonstrated that even though genotype diversity was lost as an ANN
controller converged to one specialized behavioral role, cooperation between
multiple ANN controllers (populations) emerged as a result of different ANN
controllers converging to complementary behavioral roles. Derivation of these
behavioral roles was driven by a cooperative co-evolution scheme that rewarded
effective collective behavior. However, such collective behavior emerges without
any direction of evolution based on the success of behavioral interactions in the



2. Related Work 33

...

...

...
SI

0
SI

p

MO
0

MO
q

HL
0

HL
u

G
0

G
1

Guˆ ( p +q)...

Agent Behavior:1 Neural Network (u hidden layer neurons)

psensory input neurons

q motor output neurons

Genotype: vector of uˆ ( p +q )
 floating-point values

I
0

I
1
   .. I

p

O
0

O
1
   .. O

q

Neuron Behavior: 1 Hidden Layer Neuron

p input connection weights

q output connection weights

Genotype: vector of p +q
floating-point values

Collective Behavior:n Neural Networks

...

...

...
SI

0
SI

p

MO
0

MO
q

HL
0

HL
u

...

...

...
SI

0
SI

p

MO
0

MO
q

HL
0

HL
u

Neuron Network 1 Neural Networkn

G
0

G
1

Gp +q...

Fig. 2.5: Cooperative Co-evolution Models. A general scheme where evolution operates at
the neuron (bottom layer), at the agent (middle layer), or at the collective behavior
level (top layer).



2. Related Work 34

Task
Environment

Fitness

Fig. 2.6: Enforced Sub-Populations (ESP). The genotype (neuron) population is segregated
into sub-populations. An ANN is formed via selecting a fittest neuron from each
sub-population. Figure adapted from Gomez [57].

task environment. Hence, the optimality of evolved behavioral specializations
and thus the composite collective behavior, remains unclear. Also, there was no
sharing of potentially useful genetic information between populations in Multi-
Agent ESP (and between sub-populations in ESP). This lack of information
sharing means that genotype solutions from one population cannot contribute
to genotype solutions in another population. Furthermore, redundant solutions
need to be independently discovered within each population, resulting in a slow
or otherwise inefficient search [56].

CCGA: Cooperative Co-evolutionary Genetic Algorithms

The Cooperative Co-evolving Genetic Algorithm (CCGA) [136] uses genetic al-
gorithms to co-evolve multiple partial solutions that interact in order to form
complete solutions to a given task. CCGA is represented by several composite
genotype populations. Each of these populations is termed a species, and each
species is genetically isolated meaning that genotypes can only be recombined
with other genotypes within the same species. At each generation of the evo-
lutionary process, genotypes from each species are instantiated as partial solu-
tions, which are evaluated in a common task environment. Genotypes (selected
from different species) are evaluated based upon how well their corresponding
phenotypes (partial solutions) interact in a given task environment for the pur-
pose of finding a complete solution. Figure 2.7 illustrates the co-evolution model
used by CCGA. Although this particular illustration shows only two species, the
model may comprise n species [138].



2. Related Work 35

Population

EA

Species 1

Population

EA

Species 2

Task
Domain

Individual

Fitness

Individual

Fitness

Fig. 2.7: Cooperative Co-evolutionary Genetic Algorithm (CCGA). CCGA allows for n
species to be co-evolved. Figure adapted from Potter [143].

Disadvantages of CCGA

The recombination of genotypes solely within the same species removes the pos-
sibility for sharing potentially beneficial genetic information between species.
This also increases the likelihood that genotypes in a given species will converge
to a sub-optimal, yet specialized, part of the genotype space. For example,
different species in CCGA can represent the same specialization, as may be
necessitated in certain tasks. However, different species cannot share informa-
tion and therefore must find the same specializations independently. Also, to
date, only genetic algorithms and evolutionary strategies have been used as the
adaptive mechanisms within each species. Different evolutionary algorithms
executing simultaneously in different species have not been tested [138].

2.4 Conclusions

This chapter over-viewed two important research for automated controller de-
sign. First, the chapter delineated several approaches for facilitating emergent
behavioral specialization in collective behavior systems. Second, the chapter
outlined NE as an effective approach for deriving robust controllers that op-
erate with incomplete sensory information in continuous and noisy simulation
environments. Controller design methods that combine cooperative co-evolution
and NE were identified as being appropriate for facilitating emergent specializa-
tion in collective behavior systems. The heterogenous multi-population nature
of cooperative co-evolution is a natural approach for encouraging the evolution
of behavioral specialization in collective behavior systems. The main purpose of
this chapter was to elucidate that controller design methods that use emergent
behavioral specialization as a problem solver are currently lacking. The research
topic of this thesis thus investigates an intersection between three research ar-
eas (NE, cooperative co-evolution, and behavioral specialization) in order to
propose and derive a method that will close this gap. The following chapter
describes Collective Neuro-Evolution (CONE) as a method that combines and
extends approaches from these research areas.



3. COLLECTIVE NEURO-EVOLUTION METHOD

This chapter introduces the Collective Neuro-Evolution (CONE) method. CONE
is designed to develop controllers for agent teams. The agent controllers are
Artificial Neural Networks (ANNs) and the development method is artificial
evolution, hence the name: CONE.

Given its application to a collective behavior task, CONE purposefully facili-
tates emergent specialization for the benefit of problem solving during controller
evolution. Emergent specialization is used in order to increase task performance
or to solve tasks that could not otherwise be solved without specialization. Such
an approach is currently lacking in controller design methods for collective be-
havior tasks. Emergent specialization refers to behavioral specialization that
results (emerges) from the evolution (development) of an individual controller,
or emerges from the interactions of multiple controllers over the course of an
evolutionary process. Given that emergent behavioral specialization is beneficial
to, and often necessary for solving collective behavior tasks, CONE contributes
to controller design research in fields such as multi-robot systems.

CONE evolves n populations of genotypes which represent n sets of neurons.
These neurons are used to construct n ANN controllers that are collectively eval-
uated in a common task environment. All ANN controllers necessarily have a
single hidden layer fully connected to input and output layers. An example of a
CONE setup using three populations is presented in figure 3.1. Unlike related
methods, which include SANE [102], CCGA [136], and ESP [56], CONE im-
plements genotype and behavioral specialization difference metrics to regulate
genotype recombination between and within populations. These difference met-
rics control recombination and direct evolution based upon genotype similarities
and the success of behavioral specializations exhibited by ANN controllers.

The remainder of this chapter is organized as follows. First, section 3.1
describes the representation used by CONE, which includes the population ar-
chitecture and genotypes. Second, section 3.2 describes the role of specialization
in CONE, which includes a definition of behavioral specialization and a metric
for calculating behavioral similarity between controllers. Third, section 3.3 de-
scribes the process used for evaluating and assigning fitness to ANN controllers
and genotypes. Fourth, section 3.4 describes the method of parent selection, as
well as the recombination and mutation operators. Fifth, section 3.5 describes
mechanisms used to adapt algorithmic parameters, which includes the adap-
tation of genetic similarity and specialization similarity thresholds. Finally,
section 3.7 presents an overview of the entire Neuro-Evolution (NE) process
employed by CONE, and section 3.9 presents the chapter conclusions.



3. Collective Neuro-Evolution Method 37

GP 3

GP 1

SP 11

SP 12

SP 13

SP 31

SP 32

SP 33

SP 34

GP 2

SP 21

SP 22

SP 23

ANN 1

ANN 2

ANN 3

Task Environment

GP: Genotype Population
SP: Sub-Population

Fig. 3.1: Collective Neuro-Evolution (CONE) Example. Three ANN controllers are derived
from three populations and evaluated in a collective behavior task. Double ended
arrows indicate self regulating recombination occurring between populations.



3. Collective Neuro-Evolution Method 38

3.1 Representation

3.1.1 Population Structure

As with related NE methods [138], [57], CONE segregates the genotype space
into n populations for the purpose of developing n ANN controllers. ANNi

(1 ≤ i ≤ n) consists of w input neurons, and v output neurons, fully connected
to ui hidden layer neurons. The number of input and output neurons remains
fixed throughout the evolutionary process of CONE and the number of hidden
layer neurons is adaptive. CONE mandates that ANNi is derived from genotype
population i (Pi), where Pi contains ui sub-populations. ANNi is derived
from Pi via selecting one genotype from each of the ui sub-populations and
decoding these genotypes into hidden layer neurons. Figure 3.1 illustrates an
example of the population structure of CONE. Three populations for deriving
three controllers in a collective behavior task are illustrated. Accordingly, ANN-
1 and ANN-2 (derived from genotype populations 1 and 2, respectively) consist
of three hidden layer neurons, whilst ANN-3 (derived from genotype population
3) consists of four hidden layer neurons.

The CONE evolutionary process is driven by mechanisms of cooperation
and competition within and between sub-populations and populations. There
is competition between the genotypes of a sub-population, given that the geno-
types compete for a place as a fittest neuron in the hidden layer of a fittest con-
troller. Also, there is cooperation between sub-populations, given that a fittest
genotype is selected from each sub-population (within a given population) in
order to participate in forming a controller. Furthermore, there is cooperation
between the controllers derived from each population, given that n controllers
must cooperate in order to accomplish a collective behavior task.

3.1.2 Genotypes

A genotype in CONE corresponds to a hidden layer neuron which is fully con-
nected to all the input and output neurons of ANNi. All ANN controllers
have the same number of input and output neurons. Genotypes have a fixed
length, where the number of genes in a genotype corresponds to the number
of parameters (number of connection weights in the corresponding hidden layer
neuron), plus a tag. The first gene is the genotype’s tag which specifies which
sub-population (which position in the hidden layer of ANNi) the genotype is
assigned to. The first gene is not subject to the evolutionary process. All geno-
types in sub-population ui have the same tag. All other genes represent input
and output connection weight values. There is a one-to-one mapping between
any genotype and its corresponding neuron.

Genotype a is defined as follows.

a =< a0, a1, . . . , ak > (3.1)

Where, a0 is the genotype’s tag, and ai (1 ≤ i ≤ k) denotes a neuron connec-
tion weight, where each connection weight is a floating point value normalized



3. Collective Neuro-Evolution Method 39

in order to be within the range: [-1.0, +1.0]. Figure 3.2 presents an illustration
of genotype a and the corresponding hidden layer neuron.

b =< b0, b1, . . . , bk > (3.2)

CONE also requires a measurement for the similarity between two genotypes
a and b, where equation 3.1 defines a, and equation 3.2 defines b.

A Genetic Distance (GD) between a and b is defined by equation 3.3.

GD(a, b) =

∑
i∈{1,...,N} |ai − bi|

N
(3.3)

Where, N is the length of a genotype.
For the purposes of measuring genotype similarity, a Genetic Similarity

Threshold (GST) is defined, where GST is within the range: [-1.0, +1.0]. Geno-
types a and b are considered to be similar if: GD(a, b) < GST .

3.2 Specialization

An integral part of CONE is defining behavioral specialization exhibited by each
ANN controller, and measuring the similarity of specializations between multiple
controllers. This section describes the calculation of a specialization distance
between two controllers, and the method used to determine if two controllers
are considered to have a similar behavioral specialization.

3.2.1 Degree of Specialization

CONE requires a behavioral specialization definition for ANN controllers. Con-
trollers select from activating at least two different motor outputs, in order to
perform at least two different actions. Hence, a specialization metric that ac-
counts for the partitioning of a controller’s work effort among different actions
is required. Given this, an extension of the behavioral specialization metric for
individual controllers defined by Gautrais et al. [55] is selected. The degree of
behavioral specialization (S) exhibited by an individual controller is defined by
the frequency with which it switches between executing distinct motor outputs
(actions) during its lifetime. Extensions to the metric of Gautrais et al. [55] are
described in the following.

1. The metric defined by Gautrais et al. [55] allowed for negative values, and
agent simulations were concocted such that only positive specialization
values were produced. This extension restricts the degree of specialization
calculated for individual behavior to a value in the range: [0, 1].

2. A Specialization Similarity Threshold. This threshold is static and deter-
mines if a controller’s behavior is specialized or non-specialized.

3. A degree of behavioral specialization can be measured for a controller team
as well as for an individual controller.



3. Collective Neuro-Evolution Method 40

Input connection
weights

Output connection
weights

g
0

g
1        ...

g
w

g
w+1    ...

g
w+v+

Tag: Hidden
layer position

Input Neurons

+

g
1       ...

g
w

g
w+1

 ...
g

w+v
Output Neurons

Decoding to
phenotype:

Hidden layer
neuron

Genotypeg =

Fig. 3.2: CONE Genotype. A genotype is an encoded hidden layer neuron that partici-
pates in a given ANN controller. There is a direct (one-to-one) mapping between a
genotype and the corresponding neuron. The genotype consists of w genes that cor-
respond to the neuron’s input connection weights, and v genes that correspond to
the neuron’s output connection weights. A tag (t) at the beginning of the genotype
(the first gene) specifies the position in the controller’s hidden layer, and hence the
sub-population number, to which the genotype is assigned.



3. Collective Neuro-Evolution Method 41

For any given controller, S is calculated as the frequency with which it
switches between each of its v actions. The calculation of S is presented in equa-
tion 3.4, where A denotes the number of times the controller switches between
different actions, and N denotes the total number of possible action switches.

S =
A

N
(3.4)

The calculation of S assumes that any given controller has v distinct motor
outputs, where one motor output activation denotes one action as being exe-
cuted. A value of S close to zero indicates a high degree of specialization, where
a controller specializes to primarily perform one action, and switches between
this and the other v -1 actions with a low frequency. A value of S close to one in-
dicates a low degree of specialization, where a controller switches between some
or all of its v actions with a high frequency. In the case of a perfect specialist
(S = 0), a controller executes the same action for the duration of its lifetime
(A = 0). An example of a non-specialist (S = 0.5) is where the controller spends
half of its lifetime switching between different actions.

3.2.2 Specialization Distance Metric

Given two controllers, ANNi and ANNj , a specialization distance (SD) is de-
fined as follows (equation 3.5).

SD(ANNi, ANNj) = |S(ANNi)− S(ANNj)| (3.5)

3.2.3 Degree of Specialization Threshold

In order to label an individual controller as specialized or not specialized, specific
values need to be assigned to the Specialization Similarity Threshold (SST).

• If S ≥ 0.5 then a controller is labeled as non-specialized.

• If S < 0.5 then a controller is labeled as specialized.

Given that a controller is defined as specialized, then it is labeled as being
specialized to action x, where x is the action that is most executed over the
course of the controller’s lifetime. Otherwise, a controller is simply labeled as
non-specialized. If a set of controllers are defined as being specialized, then it is
possible to group controllers according to their specialization to action x. A set
of controllers specialized to executing the same action is defined as a caste [83].

3.2.4 Specialization Similarity Threshold

ANNi and ANNj are considered to have a similar behavioral specialization if
both are measured as being within a Specialization Similarity Threshold (SST),
where SST ∈ {0, . . . , 1}. That is, if the condition in equation 3.6 is true.

SD(ANNi, ANNj) < SST (3.6)



3. Collective Neuro-Evolution Method 42

3.3 Evaluation

This section describes the method used to evaluate and assign a fitness to each
genotype within each population. Given a genotype that is selected to be eval-
uated, the following evaluation process is followed. In the following process
description different fitness types are referred to. The term elite portion refers
to a fittest portion of genotypes in a population.

Type A Fitness: Attained in the first part of the evaluation process which
evaluates all genotypes in all populations (section 3.3.1). Type A fitness values
are applied to genotypes, individual controllers, and groups of controllers.

Type B Fitness: Also referred to as controller utility. Controller utility is
used to rank and select a controller from the elite portion of each population.
Type B fitness values are calculated as the sum of all fitness (type A) values of
all genotypes used to construct the hidden layer of a controller.

Type C Fitness: Type C fitness values are attained in the second part of the
evaluation process which evaluates an elite group of controllers selected from
the elite portion of each population (section 3.3.2). Type C fitness applies to
genotypes, individual controllers, and groups of controllers. In preparation for
the parent selection process, type C fitness values overwrite the fitness (type A)
values previously calculated for all genotypes.

Overview of the Evaluation Process

1. Evaluate all Genotypes. From a given population, construct a controller
which includes in its hidden layer a genotype g that is to be evaluated.

2. For each of the other n-1 populations, construct n-1 other controllers via
randomly selecting genotypes from each of the other n-1 populations.

3. Test the n controllers in a task to attain a fitness (type A) value.

4. Assign this fitness (type A) value to g.

5. Repeat steps 1 to 4 until all genotypes in all sub-populations of all popu-
lations have been assigned a fitness (type A) value.

6. Evaluate Elite Controllers. From each population construct a controller
that maximizes fitness type B. Fitness type B is defined as the simple sum
of the fitness (type A) of each genotype that comprises the hidden layer
of this controller.

7. For each population test each controller derived from the elite portion
with a controller constructed from the elite portion (randomly selected)
of each other population.

8. Run these elite groups of controllers in task simulations in order to get a
fitness for each group. This group fitness (type C) is passed down to each
genotype in the hidden layer of each controller. This fitness (type C) then



3. Collective Neuro-Evolution Method 43

overwrites the old fitness (type A) of each genotype in the elite portion of
each population.

9. Repeat steps 6 to 8 until all genotypes in the elite portion of all populations
have been assigned a fitness (type C) value.

Genotype and elite controller evaluation is elaborated upon in the following.

3.3.1 Evaluate all Genotypes

Given that Pi is a population of m genotypes ({g0, . . . , gm}), ui is the number
of hidden layer neurons in ANNi, n is the number of populations, and ANNi is
constructed from Pi, and genotype g ∈ {g0, . . . , gm}, then execute the following.

For j = 1,.., ui

For i = 1,.., n

Select next g from Pij

For k = 1, .., ui, where k ̸= j

Select a random gk from Pik

End For

Construct ANNi using g and all gk genotypes as the hidden layer.

End For

For l = 1,.., n, where l ̸= i

For o = 1,.., ul

Select a random go from Plo

End For

Construct ANNl using all selected genotypes go as the hidden layer.

End For

Test the n controllers together in task simulation for a lifetime of q epochs. An
epoch is a task trial that is executed for w simulation iterations. Each
epoch tests different task and simulation environment dependent condi-
tions. An average fitness (type A) value is assigned to the controller group
at the end of the task simulation. This average fitness is calculated as the
average of all fitness values attained for all epochs of a task simulation.

End For

The same fitness (type A) is assigned to a group of n controllers, each con-
troller in the group, and the current genotype gi (selected from Pi) being eval-
uated. This fitness assignment (f ) is presented in equation 3.7.

f(nANNs) = f(ANN) = f(gi) (3.7)



3. Collective Neuro-Evolution Method 44

3.3.2 Evaluate Elite Controllers

Given that all genotypes in all populations have been assigned a fitness (type A)
value, then a fittest set of controllers can be derived according to their utility.
The utility of ANNi is calculated as presented in equation 3.8, given that ANNi

is constructed from Pi, ui is the number of hidden layer neurons in ANNi, k
∈ {u0, . . . , ui}, and f(gk) is the fitness (type A) of neuron k.

utility(ANNi) =
∑

f(gk) (3.8)

Given this, an elite portion of the fittest controllers is created as follows.

For i = 1,..,n, where, n is the number of populations.

For l = 1,..,L, where, L is the number of genotypes in the elite portion of
any given sub-population.

Construct ANNi from Pi , where each of the ui genotypes used to
construct ANNi is selected from the elite portion of each of the
ui sub-populations of Pi. Genotypes with an equal fitness (type
A) rank (l) are selected from each of the sub-populations.

Construct the other n-1 controllers , where the each of the ui geno-
types used to construct ANNj (j ̸= i) is randomly selected from
the elite portion of each of the uj sub-populations of Pj .

Test the n controllers together in task simulation for a lifetime of q
epochs. The task simulation will give an average fitness (type C)
value which overwrites the fitness (type A) value of each genotype
in the elite portion of each population. The average fitness (type
C) is calculated as the average of all fitness values attained for
all epochs of a task simulation.

End For

End For

The result of these task simulations is that a fitness (type C) value is assigned
to each of the genotypes in the elite portion of each population. This fitness
value is then used for parent selection and application of variation operators.

3.4 Selection and Variation

This section describes the methods used to select parent genotypes from the
elite portion of each population, and then the variation operators that are used
to recombine and mutate selected parents.



3. Collective Neuro-Evolution Method 45

3.4.1 Elite Selection

The following process is known as elite selection, given that selection operates
within the elite portion of each population. Given two controllers ANNi and
ANNj , constructed from the elite portions of population i (Pi) and population j
(Pj), respectively, a degree of specialization (S ) measured for controllers ANNi

and ANNj is denoted as S(ANNi) and S(ANNj), respectively. In the following
selection process description, recombination operators are referred to. These
recombination operators are described in section 3.4.3.

IF SD( ANNi, ANNj ) < SST THEN

Recombine (Pi, Pj)

ELSE Recombine(Pi) and then Recombine(Pj)

3.4.2 Sub-Population Selection

Given that two populations are to be recombined (using the recombine(Pi, Pj)
operator), the selection of sub-populations in different populations, where geno-
types within these sub-populations are to be recombined, occurs as follows.

1. Run task simulations with elite groups n of controllers. An elite controller
ANNi is one where each of the ui genotypes corresponding to a hidden
layer neuron is selected from the elite portions of each of the ui sub-
populations in Pi. These task simulations result in a fitness (type C)
being assigned to each of the elite controllers.

2. In the elite portions of all sub-populations of all populations, rank the
genotypes by their fitness (type C). These fitness values overwrite previous
fitness (type A) values that were assigned to these genotypes.

3. Select the fittest controller from each elite group ANN1,..,ANNn, where
a fittest controller is constructed via selecting the fittest genotype from
each sub-population in each population.

Given an elite group of n controllers, execute the following procedure.

For each pair i, j ∈ {1, . . . , n}, i ̸= j

Calculate SD(ANNi, ANNj)

End For

Rank these SD values in a list of increasing order

For each pair (i, j) on this list, where i ̸= j.

IF SD(ANNi, ANNj) < SST THEN

Recombine (Pi, Pj)

ELSE Recombine(Pi) and then Recombine(Pj)

End For



3. Collective Neuro-Evolution Method 46

3.4.3 Recombination Operators

Two types of recombination operators are described in the following. Crossover
refers to a one-point crossover [43] operation. Elite( Pi ) refers to the elite por-
tion of all genotypes in population i, where the genotypes are ranked (within
each of the ui sub-populations) of population Pi.

Recombine( Population Pi ):

For all ui sub-populations in Pi

Rank elite portions of all ui sub-populations

Apply recombination within each sub-population via applying crossover
to each gi and another genotype g, where g, gi ∈ elite({g0, . . . , gmu}),
g is randomly selected, gi ̸= g, and mu is the number of genotypes
in each sub-population.

End For

Survivor selection occurs in the form of recombination producing enough child
genotypes in order to replace all genotypes in Pik.

Recombine( Population Pi, Population Pj ):

For all Pi, Pj , where, i ∈ {1, . . . , ui}, j ∈ {1, . . . , uj}

Rank elite(Pi), elite(Pj) by fitness type C

Pair genotypes according to identical fitness ranks

End For

IF GD(g1, h1) + .. + GD(gL, hL) < GST, where, gl is selected from Pi, and
hl is selected from Pj , and l ∈ {1, . . . ,L}, and L is the size of the elite
portions of Pi and Pj , THEN

For all g1, h1 ,.., gL, hL

crossover (gl, hl)

End For

Survivor selection occurs in the form of recombination producing enough
child genotypes in order to replace all genotypes in Pi and Pj .

ELSE recombine(Pi) and then recombine(Pj)

3.4.4 Mutation Operator

After recombination, mutation is applied to each gene of each genotype with
a predefined degree of probability. Burst mutation with a Cauchy distribution
[57] is used in order to ensure that most weight changes are small whilst allowing
for larger changes to some weights.



3. Collective Neuro-Evolution Method 47

3.5 Adaptation of Algorithmic Parameters

Recombination between populations is autonomously regulated as a function
of the behavioral specialization exhibited by controllers, and recombinations.
In both cases, recombination is regulated with respect to fitness progress in
each population, where such regulated recombination always occurs between
sub-populations situated within different populations. The mechanisms that
regulate genotype recombination between n populations are intended to evolve
n specialized genotype niches that derive n behaviorally specialized controllers,
where these controllers behaviorally complement each other and interact in order
to produce a collective behavior. The SST and GST values are adapted by 1.0%,
calculated by exploratory experiments and found to be effective for experiments
detailed in chapters 4, 5, and 6. This did not change the GD and SD values by
too much per regulation, thus missing useful values, and was not too small so
as to slow or inhibit the discovery of effective values.

• The SST value is adapted as a function of behavioral relatedness between
the fittest n controllers and controller fitness progress (section 3.5.1).

• The GST value is adapted as a function of genotype relatedness between
sub-populations situated within n populations and the fitness progress of
each of these sub-populations (section 3.5.2).

3.5.1 Specialization for Regulating Recombination

The following heuristics are applied for regulating the SST value as a function
of behavioral specialization and fitness progress.

1. If the average degree of specialization (S ) measured for at least one of the
fittest n controllers (ranked by type C fitness) has increased over the last
V generations, and average fitness (for the fittest n controllers) stagnates
or is decreasing over this same period, then SST is decremented. That is,
if the fittest controllers have an average S that is too high for improving
team fitness, then recombination between populations is restricted.

2. If the average S measured for at least one of the fittest n controllers has
decreased over V generations, and average fitness stagnates or is decreas-
ing (for the n controllers) over this same period, then increment SST. That
is, if the fittest controllers have an average S that is too low to improve
team fitness, then allow for more recombination between populations.

3.5.2 Recombinations for Regulating Recombination

The following heuristics are applied for regulating the GST value as a function
of recombinations and fitness progress.

1. If the number of recombinations between populations has increased over
the previous V + W generations, and fitness has stagnated or decreased
over this same period, then decrement the GST value.



3. Collective Neuro-Evolution Method 48

2. If the number of recombinations between populations has decreased or
stagnated, and fitness has stagnated or decreased over the previous V +
W generations, then increment the GST value.

3.6 Adapting Controller Size

As in ESP [57], CONE adapts the number of hidden layer neurons of controllers
as a function of fitness progress in a collective behavior task. If the fitness of at
least one of the n fittest controllers has not progressed in V + W generations,
then adapt the controller size of stagnating controllers (that is, the number
of sub-populations in the population from which the stagnating controller is
derived). This differs from related work which applies NE to the adaptation of
n controllers with fixed sensory input and motor output topologies in collective
behavior tasks [197], [21], [140]. In such related work there was no dynamic
adaptation of controller size in collective behavior tasks.

Adaptation of hidden layer size in ANN cooperative co-evolution allows for
the derivation of controller sizes that effectively complement each other in col-
lective behavior task accomplishment [160]. That is, the number of hidden layer
neurons required by a controller to effectively solve a given task greatly depends
upon the complexity and nature of the task [158]. In collective behavior tasks
comprised of sub-tasks of varying degrees of complexity and difficulty, controllers
of different sizes work more effectively at solving complementary sub-tasks, and
thus cooperating in order to solve collective behavior tasks.

A lesion mechanism [102] is applied in order to regulate the adaptation of the
number of sub-populations in genotype population i (Pi). This is the population
from which a stagnating controller (ANNi) is derived. The lesion mechanism
evaluates the contribution of individual hidden layer neurons to overall controller
behavior, and accordingly increases or decreases the number of sub-populations.
That is, the current fittest controller derived from Pi is tested in ui collective
behavior task trials (one task trial for each hidden layer neuron in ANNi). In
each task trial ANNi is tested without one of its ui hidden layer neurons. In
such task trials, ANNi is evaluated together with the other (currently fittest) n-
1 controllers. A minimum fitness is defined as a threshold which ANNi (minus
a specific hidden layer neuron) must surpass in a task trial. If the re-evaluated
fitness of the lesioned ANNi is not below this fitness threshold, then the missing
neuron is deemed not to be a worthy contribution to ANNi, and the neuron
is removed. Accordingly, the sub-population from which the unworthy hidden
layer neuron is decoded is also removed. Otherwise, if all neurons are found to
be worthy contributors to ANNi, then the number of hidden layer neurons of
all controllers derived from population i is increased by one. That is, one more
sub-population is created within Pi. Within a new sub-population, genotypes
are created by randomly initializing each gene to a value within a given range.



3. Collective Neuro-Evolution Method 49

3.7 CONE Process

An overview of the CONE evolutionary process is described in the following.

1. Initialization. n populations are initialized, where population Pi (i ∈
{1, . . . ,n} contains ui sub-populations. Each sub-population contains m
genotypes. Sub-population Pij contains genotypes corresponding to neu-
rons assigned to position j in the hidden layer of ANNi, where, ANNi

is derived from Pi, and j ≤ ui. Refer to section 3.1.1 for details on the
population structure.

2. Evaluate all Genotypes. Systematically select each genotype g in each sub-
population in each population, and evaluate g in the context of a complete
controller. This controller (containing g) is evaluated together with n-1
other controllers, where these controllers do not contain g. The evaluation
results in a fitness (type A) being assigned to g. Refer to section 3.3.1 for
a complete description of how all genotypes are evaluated.

3. Evaluate Elite Controllers. For each population, systematically construct
a fittest controller from the fittest genotypes (elite portion) in each sub-
population of the population. The fitness of a controller is determined by
its utility (also known as fitness type B). A controller’s utility is determined
by a simple sum of the fitness values of the genotypes corresponding to
each hidden layer neuron. Groups of the fittest n controllers are evaluated
together in task simulations until all genotypes in the elite portion of each
population have been assigned a fitness (type C) value. This fitness (type
C) value overwrites the previously calculated fitness (type A) for each of
these genotypes. Refer to section 3.3.2 for a complete description of how
elite controllers are evaluated.

4. Parent Selection. Given that the two fittest controllers ANNi and ANNj

constructed from the elite portions of Pi and Pj are calculated as hav-
ing a sufficiently similar behavioral specializations then these populations
become candidates for recombination. Between Pi and Pj each pair of
sub-populations is tested for genetic similar. Genetically similar sub-
populations are recombined, and mutation applied. Recombination occurs
within sub-populations that are measured as not being genetically similar
to other sub-populations. Similarly, recombination occurs within popu-
lations that are measured as not being behaviorally similar. Section 3.4
presents a complete description of the parent selection process.

5. Recombination. For recombination that occurs between a pair of sub-
populations, the elite portion of genotypes in each sub-population is ranked
by fitness (type C) and genotypes with the same fitness rank are recom-
bined. For recombination that occurs within a sub-population, each geno-
type in the elite portion of the sub-population is systematically selected
and recombined with another genotype randomly selected from the elite



3. Collective Neuro-Evolution Method 50

portion. One-point crossover [43] is used for recombination. Refer to
section 3.4 for a complete description of the recombination operators.

6. Mutation. After recombination, burst mutation with a Cauchy distribu-
tion [57] is applied to each gene of each genotype with a predefined degree
of probability. Section 3.4 describes the mutation operator.

7. Adaptation of Algorithmic Parameters. If the fitness of at least one of the
fittest n controllers has not progressed in V (or V + W ) generations, then
adapt the the Specialization Similarity Threshold (SST) value or the Ge-
netic Similarity Threshold (GST) value, respectively. Section 3.5 presents
a complete description of the method used to adapt the GST and SST
values. If fitness of at least one of the n controllers has not progressed in
V + W + Y generations, then the number of sub-populations (controller
size) for each of the controllers with stagnating fitness, is adapted. Section
3.6 describes the method used to adapt controller size. V, W and Y are
constant values which were determined using exploratory experiments for
each of the collective behavior case study.

8. Stop condition. Reiterate steps [2, 7] until a desired task performance is
achieved, or the evolutionary process has run for X generations.

Parameters used by CONE are described in appendix E.

3.8 CONE and Related Methods

In the case studies detailed in chapters 4, 5, and 6, CONE is comparatively
evaluated with related controller design methods. The CONE architecture stip-
ulates that a hidden layer neuron is the basic unit (genotype) upon which arti-
ficial evolution operates. Each neuron is directly encoded as a vector of floating
point values. Other NE methods that use direct encodings (for example, NEAT:
Neuro-Evolution of Augmenting Topologies [158]) and indirect encodings (for ex-
ample, HyperNEAT: Hypercube-based Neuro-Evolution of Augmenting Topolo-
gies [33], and Cellular Encoding [65]) in order to evolve ANN controller topology
are not included in the methods comparison for the following reasons.

1. CONE uses direct encoding in order to evolve connection weights, and
adapt the number of hidden layer neurons in each controller. However,
the number of input and output neurons connected to the hidden layer, re-
mains static for all controllers. This architecture was sufficiently complex
for accomplishing the collective behavior tasks described in chapters 4, 5,
and 6. Whilst, indirect encoding methods that adapt controller topology
as a function of task requirements are conceivably appropriate for more
complex tasks, the application of such methods would add unnecessary
complexity to the methods comparison and potentially hinder elucidation
of this dissertations research goals.



3. Collective Neuro-Evolution Method 51

2. Methods such as NEAT and HyperNEAT use a competitive co-evolution
process as a means of deriving species that represent a set of fittest ANN
controllers. One focus of this research is the use of cooperative co-evolution
as a process that derives controllers to be specialized to a set of comple-
mentary behaviors that interact in a beneficial manner.

3. With the exception of HyperNEAT (an extension of NEAT) the NEAT
method has not been applied in order to solve collective behavior tasks.

D‘Ambrosio and Stanley [33] apply HyperNEAT to a pursuit-evasion task
as a means reducing search space dimensionality, deriving heterogeneity in an
evolved team, and producing a shared behavior set that could be used by all
predator agents. HyperNEAT evolves prey-capture behaviors that are encoded
by a single genotype. This genotype represents a team of heterogeneous be-
havioral roles, where a highly fit genotype corresponds to a set of predator
behaviors that cooperate and contribute to a high performance collective be-
havior. The implication of this is that beneficial predator behaviors do not
need to be rediscovered by separate predators. D‘Ambrosio and Stanley [33]
state that HyperNEAT addresses a problem that is typically encountered by
cooperative co-evolution methods that are applied to evolve collective behavior
solutions. That is, agents may either readily specialize yet not share behaviors,
or may share behaviors yet specialize poorly [187].

CONE also addresses the problem of sharing behaviors between controllers
without the need for different controllers to independently derive the same be-
havior. The approach taken by CONE is to share beneficial genotypes be-
tween populations. Recombination of genotypes endemic to different popula-
tions is regulated by behavioral specialization and genotype difference metrics.
For example, consider that a set of the fittest genotypes (spread across u sub-
populations) in a given population derives a beneficial controller behavior. If
this behavior is found to be sufficiently similar (defined by the specialization
difference metric) to another controller’s behavior, and the genotypes that de-
rived this other controller’s behavior are sufficiently similar (defined by the
genotype difference metric), then recombination occurs between the two pop-
ulations. Such an approach facilitates the propagation of beneficial behaviors
that are shared between multiple controllers.

The main reason that HyperNEAT was not included (besides being a con-
troller design method that uses indirect encoding) as part of the related methods
comparison for each of the collective behavior case studies, is that HyperNEAT
was devised by its creators after experiments for each of the collective behavior
case studies had been completed. Given this, further study is required in order
to properly analyze and ascertain the types of collective behavior tasks that are
appropriately solved by CONE versus those that more appropriately solved by
methods such as HyperNEAT.



3. Collective Neuro-Evolution Method 52

3.9 Conclusions

Collective Neuro-Evolution (CONE) is a cooperative co-evolution controller de-
sign method that uses NE to evolve solutions to collective behavior tasks that
benefit from, or require, behavioral specialization. CONE creates n genotype
populations from which n ANN controllers are evolved. These controllers must
cooperate and behaviorally specialize in order to accomplish a given collective
behavior task. CONE facilitates and uses emergent behavioral specialization
as a problem solver, for the purpose of increasing collective behavior task per-
formance. In order to effectuate specialization CONE utilizes genotype and be-
havioral specialization difference metrics for regulating recombination between
genotype populations. The genotype difference metric recombines and propa-
gates genotypes specialized to similar functionalities. The specialization differ-
ence metric recombines and propagates controllers with beneficial behavioral
specializations. Behavioral specialization is defined and measured according to
a specialization metric, which forms an integral part of CONE.



4. COLLECTIVE BEHAVIOR CASE STUDY:
PURSUIT-EVASION TASK

This chapter investigates the application of theHomogenous Conventional Neuro-
Evolution (HomCNE), Heterogenous Conventional Neuro-Evolution (HetCNE),
Cooperative Co-evolutionary Genetic Algorithm (CCGA), Multi-Agent Enforced
Sub-Populations (Multi-Agent ESP1), and Collective Neuro-Evolution (CONE)
methods to the evolution of collective behaviors in a multi-robot pursuit-evasion
task. The efficacy of each of these methods for evolving a prey-capture behavior
is investigated. A prey-capture behavior is a collective behavior that requires
the cooperation of multiple predators (pursuers) that attempt to immobilize one
or more prey (evaders). This chapter also investigates the capability of Hom-
CNE, HetCNE, CCGA, Multi-Agent ESP, and CONE for evolving behavioral
specialization that results in high performance prey-capture behaviors. The in-
vestigation of emergent specialization remains a relatively unexplored area of
research in the pursuit-evasion task [110].

4.1 Pursuit-Evasion Task

In this pursuit-evasion task a team of pursuer robots (predators) are required to
collectively immobilize (capture) at least one evader robot (prey). Prey do not
move deterministically, so it is impossible for predators to consistently predict
a prey’s movement. The prey capture task is made more complex via giving
the prey an advantage of greater speed. Previous research [110] elucidates that
at least two predators are required to accomplish this task, and that predators
with complementary behavioral specializations often increase prey capture time.
The degree of behavioral specialization exhibited by a given predator controller
is defined by the frequency with which the predator switches between v distinct
behaviors over the course of its lifetime (section 3.2.1). Predator controllers do
not produce a set of motor outputs that directly correspond to a set of distinct
behaviors. Rather, a set of varying wheel speeds and orientations produce be-
haviors that are not readily distinguishable. Methods from related work [118],
[119], [125] are used in order to correlate sensory activation and motor output
value ranges with behaviors observed in pursuit-evasion experiments. These
methods correlate specific sensory input values to particular motor output val-
ues, where such motor outputs correspond to a specific behavior. Section 4.6
presents the methods that identify specialized and collective behaviors.

1 Multi-Agent ESP and MESP are used interchangeably.



4. Collective Behavior Case Study: Pursuit-Evasion Task 54

A continuous environment corresponding to a 1000cm x 1000cm area is sim-
ulated using an extended version of the EvoRobot Khepera simulator [120].
Details of sensor and actuator properties are presented in table 4.1, and details
regarding how Khepera sensors and actuators are simulated, as well as assump-
tions made by the continuous simulation model are described in related work
[110]. The sensor and actuator configuration of each prey is that of a Khepera
mobile robot [101]. As presented in figure 4.1(A), a prey is equipped with eight
infrared proximity sensors ([SI-0, SI-7] in figure 4.1(A)) positioned on its pe-
riphery, as well as having a light on its top (L-0 in figure 4.1(A)). This light can
be detected by predator light sensors, and is used so each predator can distin-
guish fellow predators from a prey. When an obstacle comes within range (table
4.1) of a prey’s proximity sensor, that sensor is activated with a value inversely
proportional to the distance to the obstacle [120]. Sensor values are normalized
within the range [0.0, 1.0]. Each prey is also equipped with two wheel motors
([MO-0, MO-1] in figure 4.1) that control its speed and orientation.

As illustrated in figure 4.2, each prey uses a feed-forward ANN controller,
consisting of eight sensory input neurons and two motor output neurons, fully
connected to five hidden layer neurons. Sensory inputs encode the state of
the eight infrared proximity sensors, and motor outputs encode the speed of
a prey’s wheels. Motor neuron output values are computed via applying the
sigmoid function [70], and then multiplying the output value by 1.2. This sets
prey speed to be 20% faster than predator speed.

Predator sensor and actuator configuration is that of a Khepera mobile robot
[101]. As presented in figure 4.1(B), each predator is equipped with eight in-
frared proximity sensors ([SI-0, SI-7] in figure 4.1(B)), as well as eight light
([SI-8, SI-15] in figure 4.1(B)) sensors, positioned on its periphery. When an
obstacle (another predator or wall) comes within range (table 4.1) of a given
proximity sensor, that sensor is activated with a value inversely proportional to
the distance to the obstacle [120]. Likewise, when a prey comes within range
(table 4.1) of a given light sensor, that sensor is activated with a value inversely
proportional to the distance to the prey [120]. Sensor values are normalized
within the range [0.0, 1.0]. Also, each predator is equipped with two wheel
motors ([MO-0, MO-1] in figure 4.1) that control its speed and orientation.

A predator controller (figure 4.3) is a simple recurrent ANN [44], used in
order to emulate short term memory, where memory is a prerequisite for a
predator team to collectively capture a prey. A hidden layer of six sigmoidal
units fully connects 22 sensory input neurons to two motor output neurons.
Sensory input neurons encode the state of eight infrared proximity sensors and
eight light sensors ([SI-0, SI-15] in figure 4.3), as well as the hidden layer activa-
tion values from the previous simulation iteration ([SI-16, SI-21] in figure 4.3).
Motor outputs ([MO-0, MO-1] in figure 4.3) encode the speed of the two wheels.
The output value of each motor neuron updates the speed of the corresponding
wheel at each simulation iteration. The initial number of hidden layer neu-
rons in a predator controller was selected from exploratory experiments, which
indicated six hidden layer neurons to be appropriate for collective prey-capture.



4. Collective Behavior Case Study: Pursuit-Evasion Task 55

MO1

SI11

Khepera Sensor and Actuator Configuration

SI4

SI12

SI0

SI10

SI3

SI5SI14

SI15

SI13SI6

SI7

A: Prey                                      B: Predator

SI1

SI8

SI2SI9

MO0MO1

SI3

SI4

SI7SI6

SI0

SI2

SI1

MO0
SI5

Fig. 4.1: Sensor and Actuator Configuration. Prey (A) have only proximity sensors as
well as a light. Predators (B) have light and proximity sensors.

Tab. 4.1: Simulation Parameters. Pursuit-evasion experiment settings.

Pursuit-Evasion Simulation Parameter Settings

Pursuit-evasion experiment 20 runs

Prey shaping experiment 20 runs

Team types per experiment [1, 10]

Environment size 1000cm x 1000cm

Predators / Prey Khepera

Predator / Prey proximity, light sensor range 22cm

Predator team size [2, 6]

Prey per pursuit-evasion experiment [1, 2]

Obstacles per prey training experiment [2, 6]

Obstacles shape Cylinder

Obstacles diameter 5.5cm



4. Collective Behavior Case Study: Pursuit-Evasion Task 56

SI-0 SI-1 SI-2 SI-3 SI-4 SI-5 SI-6 SI-7

HL-0                 HL-1                 HL-2

MO-0       MO-1

Wheel Motors

Infrared Proximity Sensors

Fig. 4.2: Prey Feed-Forward ANN Controller. The controller is evolved by the CONE
method prior to being placed in the pursuit-evasion experiments.

 Infrared
 Proximity Sensors

SI-0 SI-7SI-8 SI-15 SI-16 SI-21

Light Sensors

HL-0       HL-1      HL-2     HL-3       HL-4 HL-5

Previous Hidden
Layer State

S

MO-0                             MO-1

Wheel Motors

SS

S SS SS

Fig. 4.3: Predator Recurrent ANN Controller. The controller is evolved by either the
HomCNE, HetCNE, CCGA, Multi-Agent ESP or CONE method.



4. Collective Behavior Case Study: Pursuit-Evasion Task 57

Tab. 4.2: Team Types. Ten team types are tested in the pursuit-evasion experiments.

Team Type Team Composition

1 Two predators and one prey robots

2 Three predators and one prey robots

3 Four predators and one prey robots

4 Five predators and one prey robots

5 Six predators and one prey robots

6 Two predators and two prey robots

7 Three predators and two prey robots

8 Four predators and two prey robots

9 Five predators and two prey robots

10 Six predators and two prey robots

4.2 Parameters and Experimental Setup

This section presents the Neuro-Evolution (NE) and simulation parameters, and
setup used for the pursuit-evasion experiments. Table 4.1 and table 4.3 present
the pursuit-evasion and NE parameter settings, respectively. NE parameter set-
tings are those used by the HomCNE, HetCNE, CCGA, Multi-Agent ESP, and
CONE methods. Simulation parameter settings are those used by the simula-
tor, such as the number of prey and predators, the environment size, and the
number of experimental runs. These parameter settings were selected given the
success of similar settings in related evolutionary robotics experiments [100].

Test experiments conducted for a parameter sensitivity analysis, indicated
that minor changes to parameter values produced similar results. Changing
parameters values to within 20% of the values given in tables 4.1 and 4.3 re-
sulted in the evolutions of predator teams that yielded prey capture times within
approximately 15% of the results presented in section 4.4.

One experiment consisted of placing a predator team in a given environment
and applying a given NE method to evolve controllers. Each experiment con-
sisted of two distinct phases: an evolution phase, and a testing phase. The term
task performance refers to prey capture time.

• Evolution phase: The controllers of a predator team are evolved for 500
generations (table 4.3) using a given NE method and simulation envi-
ronment. Each generation corresponds to one predator lifetime. Each
predator lifetime lasts for 50 epochs, where each epoch consists of 1000
simulation iterations. Each epoch represents a scenario that tests different
predator and prey orientations and starting positions in the environment.
A team’s prey capture time is calculated as an average taken over all
epochs of a predator’s lifetime. Evolved collective prey-capture behaviors
are presented in section 4.5.



4. Collective Behavior Case Study: Pursuit-Evasion Task 58

• Testing phase: The fittest n controllers (the fittest team) are selected
and set to execute in the same environment for one predator lifetime.
The testing phase does not evolve controllers, so the evolved connection
weights of each predator’s controller remains static. Task performance
results presented in this chapter are averages calculated over 20 runs of
the fittest controllers in a test environment.

4.3 Shaping Prey Behavior: Controller Evolution

Prior to being placed in pursuit-evasion experiments with a predator team, a set
of shaping experiments [132] using CONE were implemented for evolving the
connection weights of the prey controller. Shaping experiments used between
two and six predator robots together with one or two prey robots in test envi-
ronments. Shaping experiments evolved static and dynamic obstacle avoidance
behaviors. Static obstacles were walls and other obstacles that did not move
over the course of a simulation. Dynamic obstacles were predator robots. The
objective of the shaping experiments was to incrementally evolve prey behav-
iors in a set of incrementally complex environments. The result was a static and
dynamic obstacle avoidance behavior in prey robots.

Shaping experiments for incrementally evolving a prey’s evasion behavior
were found to be necessary. Direct artificial evolution produced a trivial obstacle
avoidance behavior that did not necessitate the evolution of complementary
specialized behaviors in predator teams. Shaping experiments indicated that
that the feed forward controller architecture presented in figure 4.2 was sufficient
for the purposes of evolving an effective evasion behavior. Furthermore, the
fittest controller derived uses three hidden layer neurons.

In each shaping experiment the prey performed static or dynamic obstacle
avoidance, where the number of static obstacles and predators situated in the
environment was incrementally increased. For each shaping experiment, the
fitness function was how far and fast the prey could move in a straight line
without colliding with an obstacle [124]. A prey controller lived for 50 epochs
(one generation), where each epoch consisted of 1000 simulation iterations, and
each shaping experiment consisted of 500 generations. Each epoch constituted
a test scenario testing randomly generated obstacle positions and different prey
orientations and starting positions. Fitness assigned was the average of all
epochs of a prey’s lifetime. If a prey collided with an obstacle, a zero fitness
was awarded and a new epoch started. For each shaping experiment, CONE
was selected for controller evolution given that it was found to produce fitter
controllers comparative to homCNE, hetCNE, CCGA, and Multi-Agent ESP.

Shaping Experiment 1: Static Obstacle Avoidance

In shaping experiment 1, CONE evolved a prey controller for static obstacle
avoidance. This task was selected so a prey obstacle avoidance could be evolved
from a random genotype population. In the environment, between two and six



4. Collective Behavior Case Study: Pursuit-Evasion Task 59

Tab. 4.3: NE Parameters. Parameter settings for HomCNE, HetCNE, Multi-Agent
ESP, CCGA and CONE in the pursuit-evasion experiments.

Pursuit-Evasion Neuro-Evolution (NE) Parameter Settings

Generations 500

Epochs 50

Iterations per epoch 1000

Mutation probability 0.05

Mutation type Burst (Cauchy distribution)

Mutation range [-1.0, +1.0]

Fitness stagnation Y 20 Generations (CONE/Multi-Agent ESP)

Fitness stagnation V 10 Generations (CONE)

Fitness stagnation W 10 Generations (CONE)

Genotype Distance (GD) [0.0, 1.0] (CONE)

Specialization Distance (SD) [0.0, 1.0] (CONE)

Genotype population elite portion 25%

Weight (gene) range [-10.0, +10.0]

Crossover Single point

Predator sensory input neurons 22

Predator hidden layer neurons (Initial
number)

6

Predator motor output neurons 2

Total genotypes 600

Genotype Input-output weights: 1 Neuron (Multi-Agent
ESP/CONE), All weights: 1 ANN (HomCNE,
HetCNE, CCGA)

Genotype representation Floating point value vector

Genotype populations [2, 6] (HomCNE, HetCNE, CCGA, CONE), 6
(Multi-Agent ESP)

Genotype length 24 (CONE, Multi-Agent ESP), 24 x 6 (HomCNE,
HetCNE, CCGA)

Genotypes per population 600 (HomCNE, HetCNE), [100, 300] (CCGA,
CONE), 100 (Multi-Agent ESP)



4. Collective Behavior Case Study: Pursuit-Evasion Task 60

(determined randomly) uniformly round objects, each 5.5cm in diameter, are
placed in random positions in the environment. This number of obstacles was
selected since this is also the minimum and maximum predator team size in the
pursuit-evasion experiments. Uniformly round obstacles were used given that
they are perceived in the same way independent from a sensors point of view
[100]. The fittest evolved controller was placed in shaping experiment 2.

Shaping Experiment 2: Dynamic Obstacle Avoidance

In shaping experiment 2, CONE evolved a prey controller for dynamic obstacle
avoidance. The prey was placed in an environment containing between two and
six predators. In this case, predators utilized a heuristic controller (appendix
F), which dictates that a predator moves in a straight line, at maximum speed,
towards the prey robot, when the prey is within light sensor range. Otherwise a
predator moves stochastically. The fittest dynamic obstacle avoidance controller
was placed in shaping experiment 3.

Shaping Experiment 3: Dynamic and Static Obstacle Avoidance

In shaping experiment 3, CONE evolved one prey controller in an environment
containing between two and six obstacles and between two and six predators.
The predators in this task used heuristic controllers. The fittest dynamic and
static obstacle avoidance controllers were placed in shaping experiment 4. The
fittest evolved prey controllers were also placed in pursuit-evasion experiments
using one prey robot (section 4.4).

Shaping Experiment 4: Static Obstacle Avoidance with Two Prey Robots

In shaping experiment 4, CONE evolved two prey controllers in an environment
containing two prey robots and between two and six static obstacles. The fittest
static obstacle avoidance controllers evolved for each prey robot were placed in
shaping experiment 5.

Shaping Experiment 5: Dynamic Obstacle Avoidance with Two Prey Robots

In shaping experiment 5, CONE evolved two prey controllers in an environment
containing two prey robots and between two and six predators using static
obstacles. The fittest dynamic obstacle avoidance controllers evolved for each
prey robot were placed in shaping experiment 6.

Shaping Experiment 6: Two Prey Robots

In shaping experiment 6, CONE evolved two prey controllers in an environment
containing two prey robots, between two and six static obstacles, and between
two and six predators using heuristic controllers. The fittest dynamic and static
obstacle avoidance controllers evolved for each prey robot were placed in pursuit-
evasion experiments using two prey robots (section 4.4).



4. Collective Behavior Case Study: Pursuit-Evasion Task 61

4.4 Pursuit-Evasion Experiments

Experiments use between two and six predators together with one or two prey
in the pursuit-evasion task. Experiments measure the impact of a collective
behavior design method and team type upon prey capture time. The experimen-
tal objective is to ascertain which collective behavior design method maximizes
prey capture time, and to relate the contribution of emergent behavioral spe-
cialization to prey capture time.

• Collective Behavior Design Method : Each predator is equipped with a
recurrent ANN which is adapted with one of the following NE methods.

1. HomCNE

2. HetCNE

3. CCGA

4. Multi-Agent ESP

5. CONE

• Team Type: Given a collective behavior design method, ten different team
configurations of predators and prey are tested (defined in table 4.2).

Fitness Function: Collective prey capture behaviors and the resulting fit-
ness (prey capture time) yielded from the application of HomCNE, HetCNE,
CCGA, Multi-Agent ESP, and CONE are presented in section 4.5. For any
given predator team, a fitness function calculates the average time for which a
prey is immobilized (captured). This average is calculated over all epochs of all
predator lifetimes. The fittest controller is then selected from all lifetimes (gen-
erations) in an experiment. A fitness estimation method is used, which assumes
that each predator in a team contributes equally to the capture of a prey. Thus
each predator receives an equal fitness reward when a prey is captured.

4.4.1 Evolving Prey-Capture Behavior

The following sections describe the application of HomCNE, HetCNE, CCGA,
Multi-Agent ESP and CONE to the pursuit-evasion task.

Evolving Prey-Capture Behavior with Homogenous CNE

The HomCNE process is illustrated in figure 2.3 and described in section 2.3.1.
For a team of n predators (where, n ∈ [2, 6]), one genotype population con-
taining 600 genotypes is initialized. Each genotype represents the hidden layer
connection weights of one predator ANN controller. Each genotype is encoded
as vector of 156 floating point values. That is, 24 sensory inputs plus two motor
outputs, each multiplied by six hidden layer neurons (table 4.3). A predator
controller is derived via randomly selecting one genotype from the elite portion
(table 4.3) of the population. This selected genotype is then replicated n times
in order to create a team of predator clones.



4. Collective Behavior Case Study: Pursuit-Evasion Task 62

Evolving Prey-Capture Behavior with Heterogenous CNE

The HetCNE process is illustrated in figure 2.3 and described in section 2.3.1.
For a team of n predators (where, n ∈ [2, 6]), one genotype population con-
taining 600 genotypes is initialized. Each genotype represents the hidden layer
connection weights of one predator controller. Each genotype is encoded as
vector of 156 floating point values. That is, 24 sensory inputs plus two mo-
tor outputs, each multiplied by six hidden layer neurons (table 4.3). A predator
controller is derived via randomly selecting n genotypes from the elite portion of
the population, such that no genotype is selected more than once. The selected
genotypes are then decoded into controllers for a team of n predators.

Evolving Prey-Capture Behavior with CCGA

For a team of n predators (where, n ∈ [2, 6]), n genotype populations are initial-
ized. Each population is initialized with [100, 300] genotypes. Each genotype
is encoded as vector of 156 floating point values. That is, 24 sensory inputs
plus two motor outputs, multiplied by six hidden layer neurons (table 4.3). A
predator controller is derived via randomly selecting one genotype from the elite
portion of a given population. This process is then repeated n times, in order
to derive n different controllers for a team of n predators.

Evolving Prey-Capture Behavior with Multi-Agent ESP / CONE

Multi-Agent ESP and CONE create n (where, n ∈ [2, 6]) genotype populations
for deriving n controllers. Population i consists of u sub-populations, where u
corresponds to the number of hidden layer neurons used by a controller derived
from population i. Each population is initialized with [100, 300] genotypes. Each
genotype is encoded as vector of 26 floating point values. That is, 24 sensory
inputs plus two motor outputs (table 4.3). A predator controller is derived via
randomly selecting one genotype from the elite portion of each sub-population
for a given population. These genotypes then collectively form the hidden layer
of one controller. This process is repeated n times in order to derive n different
controllers for a team of n predators.

Specific to CONE, the number of generations (V in section 3.7) which fitness
progress can stagnate within one or more populations (n controllers) before the
GD value is adapted (section 3.1.2) is presented as fitness stagnation V in
table 4.3. Also, the number of generations (W in section 3.7) which fitness
can stagnate in any given population before the number of sub-populations is
adapted (section 3.6), is presented as fitness stagnation W in table 4.3.

4.5 Evolved Prey-Capture Behaviors and Task Performances

This section describes the collective prey-capture behaviors evolved using Hom-
CNE, HetCNE, CCGA, Multi-Agent ESP and CONE. Section 4.6 describes
the methods used to measure and identify the emergent collective prey-capture
behaviors and constituent individual predator behaviors.



4. Collective Behavior Case Study: Pursuit-Evasion Task 63

Fig. 4.4: Entrapment Behavior. A tangential bar in a circle indicates the current
heading of a predator or prey. Black circle: predators. White circle: prey.

4.5.1 HomCNE / HetCNE Evolved Behavior: Entrapment

Entrapment is a prey-capture behavior that emerges in approximately 80% of
experiments applying HomCNE and HetCNE. In the entrapment behavior each
predator adopts the same behavioral role of moving in a straight line towards a
prey. This behavioral role is termed pursuer. Each predator moves towards the
prey from a different direction so as to immobilize the prey within a triangular
formation. The entrapment behavior is most effective for team types 2 and
3. That is, teams containing one prey and three or four predators. Figure 4.4
illustrates an example of the entrapment behavior using team type 2.

4.5.2 CCGA / Multi-Agent ESP Evolved Behavior: Pursuer-Blocker

Pursuer-blocker is a prey-capture behavior that emerges in approximately 65%
of experiments applying CCGA and 70% of experiments applying Multi-Agent
ESP. Figure 4.5 illustrates an example of the pursuer-blocker behavior using
team type 2. Predators A and B are the pursuers, assuming positions behind
and to either side of the prey. Predator C assumes the role of a blocker. When
the prey moves within light sensor range of predator C, this predator moves
directly towards the prey. The prey then turns to avoid predator C, however
its evasion is halted by pursuing predators. The result is that the prey becomes
immobilized between the three predators. The pursuer-blocker behavior is most
effective for team types 2 and 3. Team types 4 and 5 yield comparatively
poor results due to physical interference that occurs between predators as they
collectively approach a prey. Pursuer-blocker fails with team type 1, since two
predators are insufficient.

4.5.3 CCGA / Multi-Agent ESP / CONE Evolved Behavior: Spiders-Fly

Spiders-fly is a prey-capture behavior that emerges in approximately 40% of
experiments applying CCGA, 35% of experiments applying Multi-Agent ESP,
and 50% of experiments applying CONE. Figure 4.6 presents an example of
the spiders-fly behavior using team type 2. At simulation time t the prey is



4. Collective Behavior Case Study: Pursuit-Evasion Task 64

A B

C

A: Pursuer 1
B: Pursuer 2
C: Blocker

Fig. 4.5: Pursuer-blocker behavior. A tangential bar in a circle indicates the heading
of a predator or prey. Black circles: predators. White circle: prey.

A

B

CA: Idle
B: Pursuer 1
C: Pursuer 2

C

Simulation time t Simulation time t +w

A: Pursuer 3
B: Pursuer 1
C: Pursuer 2

B

C
A

B

Fig. 4.6: Spiders-Fly Behavior. A tangential bar in a circle indicates the current head-
ing of a predator or prey. Black circles: predators. White circle: prey.



4. Collective Behavior Case Study: Pursuit-Evasion Task 65

C

B

A

Simulation time t +w

A: Flanker
B: Knocker
C: Idle

A: Knocker
B: Flanker
C: Knocker

Simulation time t

B

A
C

Fig. 4.7: Role switcher behavior 1. A tangential bar in a circle indicates the current
heading of a predator or prey. Black circles: predators. White circle: prey.

following a wall, and is being pursued by predators B and C. As the prey reaches
the corner and turns about, predator A (previously idle in close proximity to
the corner) becomes active. The result is that at simulation time t + w the prey
is immobilized between the corner and predators A, B, and C. The spiders-fly
behavior is most effective when using team types 1 to 3. Team types 4 to 6
fail in the early stages of the CONE evolutionary process (≤ 250 generations)
due to physical interference that occurs between predators as they collectively
approach a prey. However, team types 4 to 6 often succeed in later stages of
the CONE evolutionary process (> 250 generations) given that the fourth, fifth
and sixth predators evolve so as to assume idle behaviors (section 4.5.6).

4.5.4 CONE Evolved Behavior: Role-Switcher

Role-switcher is a prey-capture behavior that emerges in approximately 80%
of experiments applying CONE. Figures 4.7 and 4.8 illustrate two versions of
role switcher using team types 2 to 3. Several versions of the role-switcher
behavior emerged, however, only two are described and illustrated here due
to space constraints. In each version, different predators adopt multiple and
complementary behavioral roles, and switch between these roles in order to
maintain the effectiveness of the prey-capture behavior. These behavioral roles
are named: flanker, knocker and idle. A flanker is a predator that remains in
close proximity to the left or right hand side of the rear of a prey. A flanker
repeatedly collides with a prey so as to force the prey’s movement in a particular
direction. A knocker is a predator that consistently moves in a semi-circular
motion so as to repeatedly collide with the prey, and thus slow its movement.
An idle predator is one that does not move. The role switcher strategy is
effective for team types 2 to 5. Given that at least four predators are within
sensory range of a prey, the closest three predators participate in the role-
switcher behavior, whilst the other predators remain idle. The emergence of
these idle predator behaviors is discussed in section 4.5.6. Two predators (team
type 1) are insufficient to immobilize a prey in this case.



4. Collective Behavior Case Study: Pursuit-Evasion Task 66

C

B

A

Simulation time t +wSimulation time t

A: Flanker
B: Knocker
C: Flanker
D: Idle

D

A: Knocker
B: Idle
C: Flanker
D: Knocker

C

A
D

B

Fig. 4.8: Role switcher behavior 2. A tangential bar in a circle indicates the heading
of a predator or prey robot. Black circles: predators. White circle: prey.

Role Switcher Behavior 1

Figure 4.7 illustrates an example of the first version of role switcher operating
with team type 2. At simulation time t the prey turns left 90 degrees to evade
predators A and B. Predator B switches its behavior from a knocker to a flanker
role, and predator C switches its behavior from an idle to a knocker role. The
result is that the predators stay in close proximity to the prey, and at simulation
time t + w, capture it within a triangular formation.

Role Switcher Behavior 2

Figure 4.8 illustrates an example of the second version of the role switcher
behavior, operating with team type 3. At simulation time t the prey turns left
90 degrees to evade predators A and B. Predator B switches its behavior to
an idle role, whilst predator A switches to a knocker role. At the same time
predator D switches from an idle to a knocker role, whilst predator C maintains
its flanker role. The result is that at simulation time t + w predators A, C and
D capture the prey within a triangular formation.

Role Switcher Behavior 3

Figure 4.9 illustrates an example of the third version of the role switcher be-
havior, operating with team type 2. At simulation time t the prey turns left
180 degrees to evade predators A and B, both predators A and B switch their
behaviors from knocker to flanker roles. At the same time predator C switches
its behavior from a flanker to a knocker role. The result is that at time t + w
the predators manage to immobilize the prey within a triangular formation.

4.5.5 Pursuit-Evasion Experiments Testing Two Prey

This section presents results of pursuit-evasion experiments that test between
two and six predators and two prey. Figure 4.10 presents average prey-capture
times, for all methods, as being lower for experiments testing two prey (team



4. Collective Behavior Case Study: Pursuit-Evasion Task 67

A B

C

A: Knocker
B: Knocker
C: Flanker

A: Flanker
B: Flanker
C: Knocker

Simulation time t +wSimulation time t

A

B

C

Fig. 4.9: Role Switcher Behavior 3. A tangential bar in a circle indicates predator or
prey heading. Black circles: predators. White circle: prey.

types 6 to 10), comparative to experiments testing one prey (team types 1 to
5). This is a result of predators switching between the prey that they pursue. If
two prey are within close proximity of each other, then predators often switch
between pursuing each of the prey. This inconsistent pursuit behavior, and the
need for predators to avoid colliding with each other as they approach a prey,
decreases the chance of a predator team forming a prey capture behavior.

4.5.6 Statistical Comparison of Task Performance Results

Figure 4.10 presents average prey capture times yielded by HomCNE, HetCNE,
CCGA, Multi-Agent ESP, and CONE evolved teams for all team types. To
draw conclusions, a set of statistical tests are performed in order to gauge task
performance differences between respective method results. To compare task
performances yielded by two teams a statistical comparison is conducted be-
tween two given sets of task performance data. The following procedure is
followed for a statistical comparison between any given two data sets.

• The Kolmogorov-Smirnov test [48] is applied to each of the data sets in
order to check if the data sets conform to normal distributions.

• To determine if there is a statistically significant difference between task
performance results of any two teams evolved by given methods, an inde-
pendent t-test [48] is applied. The threshold for statistical significance is
0.05, and the null hypothesis is that data sets do not significantly differ.

Appendix A presents the results of this statistical comparison. This compar-
ison supports the hypothesis that CONE evolves teams yielding a higher task



4. Collective Behavior Case Study: Pursuit-Evasion Task 68

Fig. 4.10: Average Prey-Capture Times (Simulation Iterations). Fitness of HomCNE,
HetCNE, CCGA, Multi-Agent ESP, and CONE evolved teams.

performance comparative to those evolved with HomCNE, HetCNE, CCGA and
Multi-Agent ESP. That is, CONE evolved teams yield comparatively higher per-
formances for team types 4, 5, 8, 9, and 10, and comparable performances for
team types 1, 2, 3, 6, and 7.

The higher performance of CONE evolved teams is supported by the emer-
gence of the idle behavioral role. The idle behavior specialization provides a
means of reducing physical interference between predators, thereby increasing
the effectiveness of prey-capture behaviors in, and thus fitness of, CONE evolved
teams. This specialized behavioral role emerges in predator teams evolved with
team types 4, 5, 8, 9 and 10. Idle behavioral roles do not emerge in predator
teams operating in team types: 1, 2, 3, 6, and 7. It is theorized that the idle
predator behavioral role emerges as a means of reducing physical interference
between predators. That is, the idle behavior increases the prey capture time
of the role switcher, which in turn increases the fitness of CONE evolved teams.

4.5.7 The Role of Difference Metrics in CONE

This analysis supports the efficacy of the Genotype Difference Metric (GDM)
and the Specialization Difference Metric (SDM) for facilitating behavioral spe-
cialization, and increasing task performance in CONE evolved teams. As part
of this analysis, CONE is re-executed with the following experimental setups.

1. CONE without GDM (CONE-1): Predator teams are evolved by CONE
without the GDM. The SDM remains active.



4. Collective Behavior Case Study: Pursuit-Evasion Task 69

Fig. 4.11: GDM Analysis Results. Prey-capture times yielded by the original CONE
setup and each of the CONE variants: CONE-1, CONE-2, and CONE-3.

2. CONE without SDM (CONE-2): Teams are evolved by CONE without
the SDM. The GDM remains active.

3. CONE without GDM and SDM (CONE-3): Teams are evolved by CONE
without the GDM and SDM.

Figure 4.11 presents prey-capture times that result from applying each of
the variants to the original CONE experimental setup (CONE-1, CONE-2, and
CONE-3) for team types 1 to 10. Prey-capture results are averaged over 20 ex-
perimental runs. For comparison, results previously attained by CONE evolved
teams are also presented in figure 4.11. A statistical comparison of results pre-
sented in figure 4.11 indicate that teams evolved by CONE without the GDM
(CONE-1), SDM (CONE-2), and both the GDM and SDM (CONE-3), yielded
a significantly lower task performance comparable to CONE evolved teams (for
all team types except 1, 6 and 7). Appendix A presents t-test values resulting
from this statistical comparison. For a majority of the team types tested, both
the GDM and SDM are beneficial in terms of increasing the task performance
of CONE evolved predator teams.

4.6 Specialized Behaviors Analysis

This section describes an analysis that measures, identifies, and evaluates the
contribution of behaviorally specialized predator robots to emergent collective



4. Collective Behavior Case Study: Pursuit-Evasion Task 70

prey-capture behaviors. A collective prey-capture behavior is defined as a be-
havior formed by the interaction of multiple individual (potentially specialized)
behaviors, where such a collective behavior successfully captures a prey robot.

Section 4.6.1 describes methods for identifying emergent prey-capture be-
haviors, both specialized and non-specialized. Behavioral identification is ac-
complished via measuring and correlating sensor and motor actuator activation
values for observed prey-capture behaviors.

Individual prey capture behaviors, and the collective prey-capture behaviors
that they contribute to, are reproduced via manually setting sensor activation
values in test simulation instances. This procedure for reverse engineering ob-
served behaviors verifies that certain motor outputs (behaviors) are yielded by
individual predators given a particular set of sensory inputs in a particular simu-
lation instance. Section 4.6.5 evaluates the contribution of individual predators
with specialized behaviors to the effectiveness of prey-capture behaviors used by
the fittest teams. Section 4.6.6 supports a supposition that multiple predators
adopting different and complementary behavioral specializations are required in
order to achieve the highest prey-capture times.

4.6.1 Reverse Engineering Observed Predator Behaviors

The identification of individual behaviors, where such behaviors contribute to a
collective prey-capture behavior occurs using the following procedure.

1. The experimenter observes the behavior of predators in a team during
simulations where the predators collectively capture a prey. The sensory
input values for each of the predators during the instances of prey cap-
ture are recorded. The experimenter observes 20 simulations (randomly
selected from the set of all simulations) where the same collective prey-
capture behavior is observed. Sensory inputs values are measured for each
predator over the duration of prey capture for each of the 20 simulations.

2. If a predator that operates with the same range of sensory input values for
the duration of prey capture is observed in all 20 simulations as participat-
ing in the same collective prey-capture behavior, then the sensory input
values that correspond to this predator’s individual behavior are identified
as potentially contributing to an observed prey-capture behavior.

3. In order to validate individual behaviors (identified by measured sensory
input values), each individual behavior is reproduced in a test experiment
using the measured sensory input values. The reproduction of individual
behaviors is described in section 4.6.2.

4. In order to verify that identified individual behaviors contribute to ob-
served collective prey-capture behaviors, the individual behaviors of all
predators in a team (that collectively capture a prey) are reproduced and
placed together in a test experiment. If the individually reproduced be-
haviors collectively reproduce an observed prey-capture behavior (in 20



4. Collective Behavior Case Study: Pursuit-Evasion Task 71

test simulations), then each of the individually identified and reproduced
behaviors is considered to have been validated. The reproduction of col-
lective prey-capture behaviors is described in section 4.6.3.

5. The behavioral specialization metric (section 3.2.2) is applied to the in-
dividual behavior exhibited by each predator in the fittest team evolved
by each method. The specialization metric determines if each predator
comprising each of the fittest teams is specialized to one of the identified
individual behaviors, or not specialized to any behavior at all. That is,
the specialization metric measures the frequency with which a predator
switches between a given set of motor outputs (corresponding to an iden-
tified individual behavior) and other sets of motor outputs (corresponding
to other identified individual behaviors). Predators that are found to be
specialized to an individual behavior are assumed to also be specialized
to one of the collective prey-capture behaviors. The measuring and val-
idation of behavioral specialization for identified individual behaviors is
further described in section 4.6.4 and section 4.6.5.

The light and proximity sensor activation values of each of the 20 sampled in-
stances of individual and collective prey-capture behaviors, for the fittest teams
evolved by each method, are presented in appendix B.

4.6.2 Reproducing Individual Predator Behaviors

As presented in section 4.5, several individual behaviors were observed in sim-
ulations, and the sensory input values corresponding to these behaviors were
recorded. These observed individual behaviors were labeled: pursuer, blocker,
flanker, knocker and idle. In order to reproduce each of these individual behav-
iors, the inputs of a predator’s controller were manually set by the experimenter
with the average proximity and light sensor values measured for each sensory
input neuron. That is, the average sensor values calculated over 20 observed
simulations of pursuer, blocker, flanker, knocker and idle behaviors were man-
ually input into the sensory input neurons of a predator’s controller, and the
resulting (motor output) behavior observed. Using this procedure the pursuer,
blocker, flanker, knocker, and idle behaviors were successfully reproduced.

4.6.3 Reproducing Collective Prey-Capture Behaviors

As presented in section 4.5, in multiple simulations of the fittest HomCNE,
HetCNE, CCGA, Multi-Agent ESP and CONE evolved teams, several collec-
tive prey-capture behaviors were observed. These prey-capture behaviors were
labeled: entrapment, pursuer-blocker, spiders-fly and role-switcher. Sections
4.6.1 and 4.6.2 highlighted that five distinct individual predator behaviors were
identified by differing sensory-motor value ranges, and that each of these in-
dividual behaviors is reproducible. Given this, prey-capture behaviors can be
reproduced by first reproducing and then combining at least two individual
predator behaviors. Individual behaviors are combined via placing at least two



4. Collective Behavior Case Study: Pursuit-Evasion Task 72

Tab. 4.4: Behavioral Composition of Fittest Teams. Predators in the fittest teams
(evolved by each method) are specialized to one of the identified prey-capture
behaviors (entrapment, pursuer-blocker, spider-fly, or role-switcher) or are
not specialized to any one prey-capture behavior. NA: Not Applicable.

Prey-Capture Behavior

Fittest Team Evolved
By:

Entrapment Pursuer-
Blocker

Spider-
Fly

Role-
Switcher

Non-
Specialized

HomCNE (3 predators) 0/3 NA NA NA 3/3

HetCNE (3 predators) 0/3 NA NA NA 3/3

CCGA (4 predators) NA 1/4 1/4 NA 2/4

Multi - Agent ESP
(4 predators)

NA 2/4 1/4 NA 1/4

CONE (5 predators) NA NA 1/5 3/5 1/5

predators preset with either the pursuer, blocker, flanker, knocker or idle behav-
iors, within proximity sensor range of each other and light sensor range of a prey.
In the case of reproducing the spiders-fly prey-capture behavior, the predators
and prey are also placed within proximity sensor range of a wall. Using this
procedure one is able to reproduce each of the prey-capture behaviors observed
in the fittest teams, from a set of constituent individual behaviors. The repro-
duction of observed prey-capture behaviors indicates that each is comprised of
the following individual behaviors.

• Entrapment : At least three and at most four pursuer predators.

• Pursuer-blocker : At least one and at most three pursuer predators, and
at least two and at most three blocker predators.

• Spiders-fly : At least one and at most two blocker predators, and at least
one and at most three pursuer predators.

• Role-switcher : At least one and at most three flanker, at least one and at
most three knocker, and between zero and three idle predators.

4.6.4 Measuring Behavioral Specialization

This section presents the method used to measure if the individual behavior
exhibited by any given predator, over the course of its lifetime, is specialized
or non-specialized. The behavioral specialization metric is applied to individual
predator behaviors that comprise the fittest teams (evolved by each method).
The behavioral specialization metric allows each predator in each of the fittest
teams to be identified as being non-specialized or specialized to one of the indi-
vidual behaviors (identified in section 4.6.2 as pursuer, blocker, flanker, knocker,
and idle). Furthermore, given that a predator (in a fittest team) is found to



4. Collective Behavior Case Study: Pursuit-Evasion Task 73

be specialized to an individual behavior, the predator is also specialized to one
of the prey-capture behaviors. That is, a predator specialized to an identified
individual behavior equates with the given predator executing the behavior such
that it switches with a low frequency to executing other individual behaviors,
and thus infrequently participating in other prey-capture behaviors (which do
not include the given individual behavior).

As presented in section 4.6.3, each of the prey-capture behaviors: pursuer-
blocker, spider-fly and role-switcher, consists of at least two predators adopting
different individual behaviors. The entrapment prey-capture behavior consists
of at least three predators adopting the same behavioral specialization. Non-
specialized predators are considered generalists given that they switch between
performing different individual behaviors, or perhaps none of the identified be-
haviors, with a high frequency. Non-specialized predators thus contribute to
multiple different prey-capture behaviors over the course of their lifetimes. In
the case of a generalist, there is no particular prey-capture behavior that the
predator participates in for the majority of its lifetime. Table 4.4 presents the
specialized behavioral composition of the fittest teams evolved by HomCNE,
HetCNE, CCGA, Multi-Agent ESP and CONE. For each of the fittest teams
(evolved by each method), predators are identified as being specialized to one
of the prey-capture behaviors: entrapment, pursuer-blocker, spider-fly or role-
switcher, or alternatively not specialized to any prey-capture behavior. Table
4.4 presents the fittest teams evolved by HomCNE, HetCNE, CCGA, Multi-
Agent ESP, and CONE as consisting of 3, 3, 4, 4, and 5 predators, respectively.
For each of these fittest teams the number of predators specialized (to a prey-
capture behavior) or not specialized (to any prey-capture behavior) is presented.

4.6.5 Validating the Role of Behavioral Specialization

This section describes a set of experiments that illustrate that for in order for
collective prey-capture behaviors to be effective, these prey-capture behaviors
must be composed of a set of complementary specialized individual behaviors.
To accomplish this, experiments referred to as behavioral validation experiments
evaluate the effectiveness of teams consisting of the same behavioral specializa-
tion compared to teams consisting of complementary specialized behaviors. In
the behavioral validation experiments, teams are constructed where each preda-
tor in the team assumes one of the following behaviors: pursuer, blocker, flanker,
knocker or idle. The method used by the experimenter in order to reproduce
each of these individual behaviors is described in section 4.6.2.

Results of the behavioral validation experiments are presented in figure 4.12.
Figure 4.12 presents the task performances yielded by teams consisting of preda-
tors adopting the same behavior (referred to as cloned teams for simplicity)
versus teams consisting of predators that adopt different behaviors (referred to
as prey-capture teams). Each of the cloned and prey-capture teams are tested
for team types 1 to 5. An average task performance is calculated over 20 exper-
imental runs for each cloned and prey-capture team.

Only team types 1 to 5 are used since the behavioral validation experiments



4. Collective Behavior Case Study: Pursuit-Evasion Task 74

Fig. 4.12: Behavioral Validation Experiments. Comparison of cloned teams and prey-
capture teams. See text for explanation.

only test the task performance of predator teams attempting to capture one
prey. For each behavioral validation experiment, predators and prey are placed
in random locations. However, predators are placed within proximity sensor
range of each other and light sensor range of a prey. In the case of the behav-
ioral validation experiments that test the spiders-fly prey-capture behavior, one
predator was placed in close proximity to a corner, the prey is placed in close
proximity to a wall, and another predator placed within light sensor range of
the prey. Cloned teams are defined as follows.

1. Pursuer-Team: Consists of predators specialized to the pursuer behavior.

2. Blocker-Team: Consists of predators specialized to the blocker behavior.

3. Flanker-Team: Consists of predators specialized to the flanker behavior.

4. Knocker-Team: Consists of predators specialized to the knocker behavior.

All behavioral validation experiments test prey capture with only one prey
(team types 1 to 5) given the ineffectiveness of teams evolved for the task of
capturing two prey (section 4.5.5). An idle-team is not presented in the compar-
ison of cloned teams and prey-capture teams presented in figure 4.12, since these
teams yield no prey-capture time for all team types. Prey-capture teams are
defined, for team types 1 to 5, as follows. For each team type the following team
behavioral compositions were selected given that these were the compositions
most frequently observed in simulations of the fittest evolved teams.



4. Collective Behavior Case Study: Pursuit-Evasion Task 75

• Entrapment-Team: The same as the cloned team: pursuer-team.

• Pursuer-Blocker Team:

– Team type 1: One pursuer and one blocker predator.

– Team type 2: Two pursuer predators, and one blocker predator.

– Team type 3: Two pursuer and two blocker predators.

– Team type 4: Three pursuer and two blocker predators.

– Team type 5: Three pursuer and three blocker predators.

• Spiders-Fly Team:

– Team type 1: One pursuer and one blocker predator.

– Team type 2: Two pursuer predators, and one blocker predator.

– Team type 3: Two pursuer and two blocker predators.

– Team type 4: Three pursuer and two blocker predators.

– Team type 5: Three pursuer and three blocker predators.

• Role-Switcher Team:

– Team type 1: One flanker and one knocker predator.

– Team type 2: Two flanker predators, and one knocker predator.

– Team type 3: Two flanker, one knocker and one idle predator.

– Team type 4: Two flanker, two knocker and one idle predator.

– Team type 5: Two flanker, three knocker and two idle predators.

A statistical comparison of the task performances yielded by cloned teams
versus prey-capture teams, for each team type (presented in figure 4.12) in-
dicates that prey-capture teams (with the exception of the entrapment prey-
capture team) yield significantly higher task performances for team types 1 to
5. The entrapment team was an exception given that all predators in the team
were specialized to the pursuer behavior. This made the entrapment prey-
capture team the same as the pursuer cloned team.

These results indicate that a set of complementary and specialized indi-
vidual behaviors are required for the pursuer-blocker, spiders-fly, and role-
switcherprey-capture behaviors to be effective. Hence, teams consisting of
predators using the same behaviors were insufficient for capturing a prey.

4.6.6 Prey-Capture Behavior Lesion Study

Predators in the fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP, and
CONE evolved teams specialized to either the entrapment, pursuer-blocker,
spider-fly, or role-switcher prey-capture behaviors are systematically removed,
and replaced with a non-specialized heuristic controller. The resulting team
behavior is then observed. The heuristic controller mandates that a predator



4. Collective Behavior Case Study: Pursuit-Evasion Task 76

Tab. 4.5: Prey-Capture Behavior Lesion Study. The performance of the fittest teams
(evolved by each method), where predators specialized to a given individual
behavior are removed and replaced with a non-specialized heuristic con-
troller. Values are percentages of original team task performance. In the
first column the names in parentheses are prey-capture behaviors that the
given individual behavior contributes to. NA: Not Applicable.

Remove Predators with Be-
havioral Specialization:

CONE Multi-
Agent ESP

CCGA HomCNE HetCNE

Pursuer (Entrapment /
Pursuer-Blocker/Spiders-Fly)

NA NA NA 53.4% 55.5%

Blocker (Pursuer-Blocker /
Spiders-Fly)

NA 20.0% 60.0% 46.9% 43.7%

Flanker (Role-switcher) 18.9% 26.3% 45.7% NA NA

Knocker (Role-switcher) 12.3% NA NA NA NA

Idle (Role-switcher) 12.3% NA NA NA NA

moves directly towards a prey when the prey is within light sensor range, or
towards a prey’s last known location and then stochastically when a prey is be-
yond light sensor range. Table 4.5 presents the performance of the fittest teams,
with predators specialized to individual behaviors removed.

Particular combinations of the individual behaviors: blocker, pursuer, flanker,
knocker, and idle were identified as being the constituent behaviors that form
the entrapment, pursuer-blocker, spider-fly, and role-switcher collective prey-
capture behaviors (section 4.6.3). Removing predators that are specialized to
either the: blocker, pursuer, flanker, knocker, or idle behavior from the fittest
teams (evolved by each method), provides an indication of the value of these in-
dividual behaviors to the collective prey-capture behaviors. The values in table
4.5 are percentages of the original prey-capture times. These values are calcu-
lated over 20 experimental runs. Statistically comparable results are attained
with behavioral lesioning of the second and third fittest HomCNE, HetCNE,
CCGA, Multi-Agent ESP and CONE evolved teams. As presented in table 4.5,
the impact of removing a specialization to any individual behavior is most pro-
nounced in the fittest CONE evolved teams, and less pronounced in the fittest
CCGA and Multi-Agent ESP evolved teams, and least pronounced in the fittest
HomCNE and HetCNE evolved teams. This result indicates that the fittest
CONE evolved team is on average more reliant on its constituent specializa-
tions comparative to the fittest teams evolved by related methods.

4.7 Conclusions

This chapter investigated the application of CONE for evolving collective be-
haviors in a pursuit-evasion case study. The pursuit-evasion task required that
a team of simulated predator robots evolve a collective prey capture behavior in
order to immobilize (capture) at least one prey robot.



4. Collective Behavior Case Study: Pursuit-Evasion Task 77

CONE evolved predator teams yielded a higher average task performance
comparative to that yielded by teams evolved by related controller design meth-
ods. The highest performing CONE evolved teams used prey-capture behav-
iors that consisted of a set of complementary and inter-dependent behavioral
specializations. An experimental analysis indicated that emergent behavioral
specializations made a significant contribution to CONE evolved teams.

The pursuit-evasion case study established that CONE is appropriate for the
evolution of collective behaviors, where the exact nature of behavioral special-
izations required to form an effective collective behavior is initially unknown.
The following collective behavior case study, the multi-rover task, tests a greater
number of controllers in a task where the types of behavioral specializations re-
quired for collective behavior task accomplishment, is predefined.



5. COLLECTIVE BEHAVIOR CASE STUDY: MULTI-ROVER

The multi-rover task is a collective behavior task that requires a team of sim-
ulated autonomous vehicles (rovers) to derive a collective search behavior that
maximizes the value of features of interest (red rocks) detected. The term red
rock refers to discrete high-value features of interest on an unexplored terrain
[199]. The term detected refers to an instance when a red rock is within range
of a rover’s red rock detection sensors. Detected red rock value is automatically
communicated to a base station (lander). Discrete and continuous versions of
the multi-rover task were introduced by Agogino [2, 3] with the goal of inves-
tigating the credit assignment problem. In the multi-rover task described by
Agogino [2], rovers select only where to move in a discrete or continuous simu-
lation environment. The multi-rover task described in this chapter differs from
that described by Agogino [2] in a number of respects.

1. This is a collective behavior (not a distributed artificial intelligence) task,
given that at least two rovers are required in order to accomplish the task.

2. Rovers use detection sensors with variable settings, where as in previous
work [2], rovers operate with detection sensors always being active. The
detection sensors have a cost-benefit trade-off, and thus provide each rover
with the possibility to specialize to a particular sensor setting.

3. In this multi-rover task, task performance evaluation criteria includes the
total value of red rocks detected, and the portion of the simulation envi-
ronment covered by a rover’s red rock detection sensors. In previous work
[2], task performance was evaluated only according to the total value of
red rocks detected. Furthermore, red rock detection could be done indi-
vidually, and collective behavior was not required.

First, this chapter describes the multi-rover task. This description includes
the benefit of behavioral specialization, and how specialization is measured in
the multi-rover task. Second, the design of each rover’s controller, and its sensors
and actuators are described. Third, the experimental design of the multi-rover
task is described. Fourth, multi-rover task results are described. The fifth sec-
tion presents an analysis of the multi-rover task results. The analysis illustrates
the contribution of behavioral specialization to task performance. The sixth
section presents conclusions drawn from the multi-rover case study.



5. Collective Behavior Case Study: Multi-Rover 79

5.1 Multi-Rover Task

5.1.1 Multi-Rover Simulation Environments

A multi-rover simulation environment is defined by the following features.

1. Classification of the environment as either simple or complex.

2. Distribution of red rocks of a given type (section 5.1.4).

There are five red rock types: [A, B, C, D, E]. At least two rovers are re-
quired in order to detect a red rock of any type. The red rock detection sensor
setting mandated by each rover depends upon the red rock type. Table 5.1
presents the red rock detection sensor settings required for each red rock type
to be detected. Environments are classified as either simple or complex as a
result of experiments that determined that certain environments are amenable
to encouraging emergent behavioral specialization during rover controller evo-
lution. An environment is classified as simple if the environment only contains
red rocks of one type. Simple environments contain a distribution of only type E
red rocks. An environment is classified as complex if the environment contains
red rocks of multiple types. Complex environments contain distributions of type
A, type B, type C, and type D red rocks.

5.1.2 Rovers in the Simulation Environment

Rovers operate in a continuous simulation environment which is characterized
by a two dimensional plane. Only one rover can occupy any given x, y position
in the environment. Movement is calculated in terms of real valued vectors. To
calculate the distance between this rover (p), other rovers and red rocks (q),
the squared Euclidean norm, bounded by a minimum observation distance δ2,
is used. A minimum distance is to prevent singularities [3] when a rover is very
close to a red rock. Equation 6.1 is used as the distance metric.

δ(p, q) = min(∥x− y∥2, δ2) (5.1)

5.1.3 Lander (Base station)

The lander has no active role in the detection of red rocks. The purpose of
the lander is to receive and record the total value of red rocks detected over
the course of each rover’s lifetime. Given that a rover detects red rock value
at time t, it automatically communicates this value to the lander at time t+1.
The lander is initialized at a random position in the environment, and remains
in this position for the duration of a simulation. It is assumed that all rovers
remain within communication range of the lander. Thus the distance to the
lander is not an issue for the evolution of rover collective behavior.



5. Collective Behavior Case Study: Multi-Rover 80

Tab. 5.1: Collective Behavior for Red Rock Detection. A given number of rovers are
needed to collectively detect a red rock (of a given type). Each rover needs
to use a given red rock detection sensor resolution.

Red Rock Type Red Rock Value Rovers Required

A 1 2 Low-Res Detectors

E 1 2 Detectors (using same settings)

B 2 1 Low-Res, 1 Med-Res Detector

C 3 1 Med-Res, 1 Hi-Res Detector

D 4 2 Hi-Res Detectors

5.1.4 Red Rock Distribution

Red rock distributions are defined according to ten pre-defined environments.
The red rock structures formed by red rock distributions within these environ-
ment types are called red rock canals. In the experiments conducted by Young
et al. [198], [200], [199], the term red rock canals is used to denote a set of red
rocks that retain a canal like structure. In Young et al. [198], [200], [199], it
was the goal of rovers to maximize detection of red rocks via following these
canals. This was also the motivation for the use of red rock canals for this case
study. However, the goal of maximizing red rock detection has been made more
complex via introducing collective behavior requirements.

These canals define areas within which red rocks are contained and represent
areas that are impassable to rovers. Hence, to move through the environment,
rovers must navigate around these red rock canals. The ten canal environments
are illustrated in figures 5.1, 5.2, 5.3, 5.4, and 5.5. These ten environments
contain varying degrees of structure in the red rock canals. For example, a high
degree of structure in environment type 1 (figure 5.1), through to a low degree
of structure in environment type 10 (figure 5.5). A low degree of structure
refers to sets of red rocks being disjoint and generally not conforming to a canal
like structure. A high degree of structure refers to sets of red rocks that are
joined and that conform to canal like structures. Red rocks are distributed such
that a red rock can placed at each possible x, y position within the confines of
a canal. The canal environments were selected from exploratory experiments
that found such environments to contain sufficient complexity in order that the
most effective rover teams achieved a near optimal task performance, and the
least effective teams attained a near zero task performance.

5.1.5 Collective Behavior for Red Rock Detection

Collective behavior is required in order for red rocks to be detected. The prob-
ability that a rover detects a red rock is determined by the current red rock
detection sensor setting. Table 5.1 indicates that at least two rovers are re-
quired in order to detect a red rock of any type. Rovers are required to use the
same detection sensor settings in order to detect red rocks of type A, D and



5. Collective Behavior Case Study: Multi-Rover 81

Impassable canal segment Edge of environment

Red Rock Canal Environment 1      Red Rock Canal Environment 2

Fig. 5.1: Canal Environments. Environment types [1,2].

Red Rock Canal Environment 3      Red Rock Canal Environment 4

Impassable canal segment Edge of environment

Fig. 5.2: Canal Environments. Environment types [3,4].



5. Collective Behavior Case Study: Multi-Rover 82

Red Rock Canal Environment 5      Red Rock Canal Environment 6

Impassable canal segment Edge of environment

Fig. 5.3: Canal Environments. Environment types [5,6].

Red Rock Canal Environment 7      Red Rock Canal Environment 8

Impassable canal segment Edge of environment

Fig. 5.4: Canal Environments. Environment types [7,8].



5. Collective Behavior Case Study: Multi-Rover 83

Impassable canal segment Edge of environment

Red Rock Canal Environment 9      Red Rock Canal Environment 10

Fig. 5.5: Canal Environments. Environment types [9,10].

Tab. 5.2: Red Rock Detection Sensor Settings. At any simulation iteration a rover can
activate its red rock detection sensors with one of three settings.

Detector Sensor Setting Accuracy Range Cost

Low-Res (Setting 0) 1.0 0.05 0.25

Med-Res (Setting 1) 1.0 0.05 0.5

Hi-Res (Setting 2) 1.0 0.05 1.0

E. The requirements specified in table 5.2 for red rock detection were selected
from exploratory experiments. These experiments found that mandating that
at least two rovers simultaneously using the same sensor settings or complemen-
tary settings encouraged the evolution of controllers with different behavioral
specializations that operated effectively in the context of a team.

5.2 Rovers

5.2.1 Red Rock Detection Sensors

Each rover is equipped with eight red rock detection sensors ([S-8, S-15] in figure
5.6), where each sensor covers one quadrant in the sensory Field Of View (FOV).
Red rock detection sensors need to be explicitly activated. This constitutes one
rover action. In the case that a rover activates its red rock detection sensors,
then all eight sensors are activated with one of three settings. This provides
each rover with a 360 degree FOV (figure 5.6). Red rock detection settings



5. Collective Behavior Case Study: Multi-Rover 84

are: low-res (setting 0), med-res (setting 1), and hi-res (setting 2). The range,
cost, and accuracy of the three different red rock detection sensor settings are
presented in table 5.2. Accuracy is the degree of probability with which red
rocks are detected. Range is defined as a portion of the environment’s size.
Given that the length and width are equal in these experiments, sensor range is
defined as the length of the side of a square. Cost is the amount of energy used
each time the red rock detection sensors are activated. When red rocks come
within range of a red rock detection sensor, then that sensor is activated with
a value inversely proportional to the value of, and distance to, the red rocks.
Equation 5.2, for red rock detection sensor q, returns the sum of red rock values
in quadrant q, divided by the squared distance to the rover.

S1(q,t) =
∑
jϵJq

1

δ(Lv,t, Lj,t)
(5.2)

Where, q is a sensor quadrant,

v is a rover,

t is simulation time step t,

Jq is the set of all red rock values in quadrant q,

Lj (jϵJq) is the location of red rock j,

Lv is the location of rover v,

rvj is the value of red rock j, where j ϵ Jq,

rvj,t = rvj if t = d,

rvj,t = 0 if t ̸= d, where d is the time that red rock j is detected.

5.2.2 Rover Detection Sensors

Each rover is equipped with eight rover detection sensors ([S-0, S-7] in figure 5.6).
Rover detection sensors fulfill two functions. First, to prevent collisions between
rovers. Second, to provide each rover with an indication of red rock detection
sensor settings being used by other rovers within this rover’s sensory FOV. The
eight rover detection sensors are constantly active and have a fixed accuracy,
range and cost (table 5.4). As presented in equation 5.3, rover detection sensor
q returns a value corresponding to the red rock detection sensor setting being
used by the closest rover, divided by the squared distance to this rover. Rover
detection sensor values are normalized within the range [0.0, 1.0].

S2(q,v,t) =
dv′

δ(Lv′ , Lv,t)
(5.3)

Where, q is a sensor quadrant,



5. Collective Behavior Case Study: Multi-Rover 85

Rover

SI
1

/SI
9

SI
0

/SI
8

SI
2

/SI
10

SI
3

/SI
11

SI
4

/SI
12

SI
5

/SI
13

SI
6

/SI
14

SI
7

/SI
15

Quadrant covered by
red rock detection /
rover detection sensors

S
a

/S
b
:Red Rock detection sensor /

              Rover detection sensor

Fig. 5.6: Rover Sensory FOV. A rover’s sensor space consists of eight quadrants. One
red rock and rover detection sensor covers each quadrant.



5. Collective Behavior Case Study: Multi-Rover 86

v is this rover, that is, the rover that is detecting other rovers,

t is simulation time step t,

v’ is the closest rover to this rover in quadrant q,

dv’ is the red rock detection sensor setting of rover v’, where dv’ is a value
equal to either 1, 2, or 3, which corresponds to rover v’ using the low-res,
med-res, or hi-res red rock detection sensors setting, respectively.

Lv′ is the location of the closest rover in sensor quadrant q,

Lv is the location of this rover.

5.2.3 Artificial Neural Network Controller

Each rover uses a simple recurrent ANN controller [44] in order to map sensory
inputs to motor outputs. The controller uses 26 sensory input neurons fully
connected to ten hidden layer neurons (figure 5.7). Five motor output neurons
[MO-0, MO-4], are fully connected to the hidden layer neurons. Sensory input
neurons [SI-0, SI-7] accept input from each of the eight rover detection sensors.
Sensory input neurons [SI-8, SI-15] accept input from each of the eight red
rock detection sensors. Sensory input neurons [SI-16, SI-25] accept the previous
activation values of each of the hidden layer neurons. The neurons comprising
the hidden and output layers are sigmoidal units [70]. All motor output values
generated by the rover controller are normalized in the range: [0, 1].

Action Selection

At each simulation iteration, a rover can execute one of four actions. The motor
output with the highest value is the action executed.

1. MO-0: Activate all red rock detection sensors with setting 0 (figure 5.7).

2. MO-1: Activate all red rock detection sensors with setting 1 (figure 5.7).

3. MO-2: Activate all red rock detection sensors with setting 2 (figure 5.7).

4. MO-3, MO-4: Move in a direction calculated from dx and dy. If either
MO-3 or MO-4 (figure 5.7) is the highest value, then the rover moves.

5.2.4 Movement Actuators

A rover’s heading is calculated from the motor output values MO-3 and MO-
4 (figure 5.7) which determine the vectors dx and dy. A rover’s heading is
determined by normalizing and scaling these vectors by the maximum distance
a rover can traverse in one simulation iteration. That is: dx = dmax(o1 - 0.5),
and dy = dmax(o2 - 0.5). Where, dmax is the maximum distance a rover can
move in one simulation iteration, o1 and o2 are motor output values MO-3 and
MO-4, respectively.



5. Collective Behavior Case Study: Multi-Rover 87

SI-0 SI-7 SI-8 SI-15 SI-16 SI-25

Red Rock DetectionRover Detection
Previous
Hidden Layer State

Maximum

MO-0 MO-1 MO-2 MO-3 MO-4

Action

... ... ...

S SS SSSS SSS SSSS SS

SS SS S

Fig. 5.7: Rover ANN Controller. Not all sensory input neurons are illustrated.

5.2.5 Heuristic Controller

Heuristic controllers are tested in addition to rover teams using ANN con-
trollers. Heuristic controllers are not modified by any adaptive process. Rather,
a collective red rock detection behavior is derived via the local interactions
of different rovers using different heuristic controllers. Four different heuris-
tic controller types are tested. Each type implements a hard-wired specialized
or non-specialized behavior (Table 5.3). Each controller is defined by a set of
probabilistic preferences for selection of one of four actions (the same as those
used by the ANN controller) at each simulation iteration. These action selec-
tion preference values were derived from a set of exploratory experiments, and
were selected given that they produced a specialized behavior. That is, these
controllers mandated switching between executing different actions with a low
frequency. Non-specialized heuristic controllers switched between executing dif-
ferent actions with a high frequency, and had no preference for a specific action.

5.2.6 Specialization in the Multi-Rover Task

In the original rover task [3], each rover could only move at each simulation
iteration, and detection sensors were constantly active. It was not possible for
different rovers to specialize to different actions. In this multi-rover task, each
rover has the possibility of selecting between multiple actions, where each action
has an associated benefit and cost. In collective behavior, such specialization
potentially increases task performance via exploiting the cost-benefit trade-off
of a given action. The sensor and energy constraints of the multi-rover task



5. Collective Behavior Case Study: Multi-Rover 88

Tab. 5.3: Rover Heuristic Controllers: Exhibit a specialized (low-res, med-res, hi-res
detector) or non-specialized behavior. Probabilistic preferences are used for
selecting one of four actions at each simulation iteration.

Controller
Type

Low-Res
Detection

Med-Res
Detection

Hi-Res
Detection

Move

Low-Res
Detector

70% 0% 0% 30%

Med-Res
Detector

0% 70% 0% 30%

Hi-Res De-
tector

0% 0% 70% 30%

Non-
Specialized

25% 25% 25% 25%

necessitate specialization in order for a team to detect an optimal red rock value.
These constraints prevent an effective systematic search of an environment.
Hence, rovers must use complementary detection sensor settings, where together
these settings produce a collective behavior that could not otherwise be attained.
This statement is supported by previous research [112], which compared rover
teams using hard-wired specialized versus non-specialized behaviors.

Specialization is measured with respect to the behavior exhibited by indi-
vidual rover controllers, and is defined by applying the behavioral specialization
metric (section 3.2.1) to a given rover’s lifetime behavior. This metric calculates
a degree of specialization (S ). Given that S < 0.5 for a given rover, it is labeled
as specialized, and if S ≥ 0.5 then it is labeled as non-specialized. If a rover
behavior is specialized, then the label given to the specialization corresponds
to the action that is most executed over the course of the course of the rover’s
lifetime. Specialization labels are assigned at the end of a rover’s lifetime, since
the time spent executing each action must be known.

• Low-Res Detector: Rover specialized to red rock detection(setting 0 ).

• Med-Res Detector: Rover specialized to red rock detection (setting 1 ).

• Hi-Res Detector: Rover specialized to red rock detection (setting 2 ).

• Mover: A rover specialized to moving.

5.3 Multi-Rover Experimental Design

Experiments test 20 rovers together with one lander in the multi-rover task.
Experiments measure the impact of a collective behavior design method and
environment upon red rock value detected and area covered by the red rock
detection sensors of a rover team. The experimental objective is to determine
which collective behavior design method maximizes the red rock value detected



5. Collective Behavior Case Study: Multi-Rover 89

and area covered. Also, the experiments aim to relate the contribution of emer-
gent behavioral specialization to rover team task performance.

• Adaptive Collective Behavior Design: Rover team behavior is adapted
with either HomCNE, HetCNE, CCGA, Multi-Agent ESP or CONE.

• Non-Adaptive Collective Behavior Design: Each rover uses one of four
non-adaptive heuristic controllers.

• Environment : Three environment sets labeled simple, complex, and ex-
tended complex are tested. Each set contains ten red rock distributions.

Section 5.4 presents task performance results of HomCNE, HetCNE, CCGA,
Multi-Agent ESP, CONE evolved teams and heuristic controlled teams.

5.3.1 Rover Team Fitness Evaluation

This section details the global fitness function (G) used to evaluate team per-
formance, and the private fitness function (gη) used to evaluate individual rover
performance. G calculates the total red rock value detected multiplied by the
portion of the environment’s area covered by a team’s red rock detection sensors.
and gη calculates the same for just rover η. The multiplication of red rock value
detected by the area covered is to encourage rovers to explore as wide an area
as possible in order to attain a high fitness. The goal of a team is to maximize
G. However, rovers do not maximize G directly. Instead each rover η attempts
to maximize gη. G does not guide evolution, but rather provides a measure
of team performance, based upon the contributions of individual rovers. The
private rover fitness function guides the evolution of each rover’s controller.

Private Fitness Function

Equation 5.4 presents gv.

gv =
∑

0≤t≤T

∑
jϵJt,v

rvj,tAv,t

min(δ(Lv,t, Lj,t))
(5.4)

Where, v is a rover,

rvj,t is the value of red rock j at time t,

Jt,v is the set of all red rock values within red rock detection sensor range of
rover v and detected by rover v,

Lj (jϵJq) is the location of red rock j,

Lv is the location of rover v,

min(δ(Lv,t, Lj,t)) is the minimum distance between the location of rover v at
time t, and the location of red rock j at time t,

Av,t is the area covered rover v ’s red rock detection sensors at time t.



5. Collective Behavior Case Study: Multi-Rover 90

Global Fitness Function

Equation 5.5 presents G.

G =
∑
vϵV

gv (5.5)

Where, V is the set of all rovers.

5.3.2 Simulation and Neuro-Evolution Parameters

Tables 5.4 and 5.5 present the simulation and NE parameter settings, respec-
tively. NE parameter settings are those used by the HomCNE, HetCNE, CCGA,
Multi-Agent ESP, and CONE methods. Simulation parameters are those used
the multi-rover simulator. Any given multi-rover experiment consists of 250
generations. Each generation corresponds to the lifetime of each rover in the
team. Each lifetime lasts for 10 epochs, where each epoch consists of 2500 sim-
ulation iterations. Each epoch represents a task scenario that tests different
rover starting positions, and red rock locations (within a given distribution) in
the environment. Task performance (red rock value detected and area covered)
is calculated as an average taken over all epochs of a rover’s lifetime. The best
task performance is then selected for each experiment, where an average is cal-
culated over 20 experimental runs. More than 20 runs per experimental setup
were not used due to time constraints in running experiments and the time con-
suming nature of the multi-rover experiments. Less than 20 experimental runs
were not used since, since a reasonable sample size of results was required for
each method in order to draw sound statistically based conclusions.

Parameter values presented in tables 5.4 and 5.5 were derived in a set of ex-
ploratory experiments, which indicated that minor changes to these parameter
values produced similar results. Changing the values for mutation probability,
fitness stagnation V, fitness stagnation W, genotype elite portion, and initial
number of hidden layer neurons to within 0.20 of the values given in table 5.5
resulted in the evolution of rover teams with a task performance within approx-
imately 0.25 of the task performance results presented in section 5.3. Similar
results were attained when the communication cost, movement range, move-
ment cost, red rock detection sensor range, red rock detection sensor cost, rover
detection sensor range, rover detection sensors cost, and rover initial energy
parameter values were changed to within 0.30 of the values given in table 5.4.

Changing the iterations per epoch to lower values decreased experiment run-
ning time, but did not give rovers enough time to widely explore the environ-
ment. Lowering the number of generations and epochs also decreased exper-
iment running time, but did not provide the NE process with sufficient time
to derive effective teams. Increasing the number of generations and epochs to
within 0.25 of their current values yielded similar teams, and increasing the
number of generations and epochs beyond this was considered infeasible due to
time limitations and the time consuming nature of these experiments.



5. Collective Behavior Case Study: Multi-Rover 91

Tab. 5.4: Simulation Parameters. Used in each multi-rover simulation.

Multi-Rover Simulation Parameters

Communication range 1.0

Communication type Broadcast

Communication cost 0.05

Movement range 0.01

Movement cost 0.01

Red rock detection sensor range 0.05

Red rock detection sensor cost Variable (section 5.2.1)

Red rock detection sensors accuracy Variable (section 5.2.1)

Rover detection sensor range 0.02

Rover detection sensors cost 0.05

Rover detection sensors accuracy 1.0

Rover initial energy 1000 units

Initial rover positions Random

Initial lander position Random

Environment width 1.0

Environment height 1.0

Individual red rock value Variable (table 5.6)

Total red rocks in environment Variable (section 5.6)

Total red rock value in environment 5000

Red rock value distribution 10 Canal environments (section 5.1.4)

Rover lifetime 2500 Iterations



5. Collective Behavior Case Study: Multi-Rover 92

Tab. 5.5: NE Parameters. Used by each NE controller design method.

Rover Neuro-Evolution (NE) Parameter Settings

Generations 250

Epochs 10

Iterations per epoch (Rover lifetime) 2500

Mutation probability (per gene) 0.05

Mutation type Burst (Cauchy distribution)

Mutation range [-1.0, +1.0]

Fitness stagnation Y 15 Generations (CONE/Multi-Agent ESP)

Fitness stagnation V 15 Generations (CONE)

Fitness stagnation W 10 Generations (CONE)

Genotype distance value [0.0, 1.0] (CONE)

Genotype Distance (GD) [0.0, 1.0] (CONE)

Specialization Distance (SD) [0.0, 1.0] (CONE)

Genotype population elite portion 50%

Weight (gene) range [-10.0, +10.0]

Crossover Single point

Sensory input neurons 26

Hidden layer neurons (Initial number) 10

Motor output neurons 5

Genotype Input-output weights: Neuron (Multi-
Agent ESP, CONE), All weights: ANN
controller (HomCNE, HetCNE, CCGA)

Genotype representation Floating point value vector

Total genotypes 10000

Genotype populations 20 (CONE, Multi-Agent ESP, CCGA), 1
(HomCNE, HetCNE)

Genotype length 31 (CONE, Multi-Agent ESP), 310 (Hom-
CNE, HetCNE, CCGA)

Genotypes per population 500 (CONE, Multi-Agent ESP, CCGA),
10000 (HomCNE, HetCNE)



5. Collective Behavior Case Study: Multi-Rover 93

5.3.3 Experimental Setups for Neuro-Evolution Methods

This section describes the experimental setup used for the HomCNE, HetCNE,
CCGA, Multi Agent-ESP and CONE methods.

Evolving Red Rock Detection Behavior with Homogenous CNE

The process of Homogenous Conventional Neuro-Evolution (HomCNE) is illus-
trated in figure 2.3, and described in section 2.3.1. For a team of 20 rovers,
the population is initialized with 2400 randomly generated genotypes. Each
genotype represents the hidden layer connection weights of one rover ANN con-
troller. Each genotype is encoded as vector of 162 floating point values. That is,
22 sensory inputs plus five motor outputs multiplied by six hidden layer neurons
(table 5.5). A rover controller is derived via randomly selecting one genotype
from the population’s elite portion (table 5.5). This selected genotype is then
replicated 20 times in order to create a team of rover clones.

Evolving Red Rock Detection Behavior with Heterogenous CNE

The process of Heterogenous Conventional Neuro-Evolution (HetCNE) is illus-
trated in figure 2.3, and described in section 2.3.1. The experimental setup of
the HetCNE method is the same as that used for HomCNE, except that a rover
controller is derived via randomly selecting 20 genotypes from the population’s
elite portion such that no genotype is selected more than once. The selected
genotypes are then decoded into a team of 20 controllers (rovers).

Evolving Red Rock Detection Behavior with CCGA

For a team of 20 rovers, 20 genotype populations are initialized. Each population
uses 120 randomly generated genotypes. Each genotype is encoded as vector of
162 floating point values. That is, 22 sensory inputs plus five motor outputs
multiplied by six hidden layer neurons (table 5.5). A rover controller is derived
via randomly selecting one genotype from the elite portion of each population.
This process is repeated 20 times, in order to derive 20 different controllers. The
CCGA process is described in section 4.4.1.

Evolving Red Rock Detection Behavior with Multi-Agent ESP/CONE

For a team of 20 rovers, both Multi-Agent ESP and CONE create 20 genotype
populations. Population i consists of u sub-populations, where u (in this case u
= 6) corresponds to the number of hidden layer neurons used by a controller de-
rived from population i. Each population is initialized with 120 genotypes. Each
genotype is encoded as vector of 27 floating point values. That is, 22 sensory
inputs plus five motor outputs (table 5.5). A controller is derived via randomly
selecting one genotype from the elite portion of each sub-population for a given
population. These genotypes then collectively form the hidden layer of one



5. Collective Behavior Case Study: Multi-Rover 94

controller. This process is repeated 20 times in order to derive 20 different con-
trollers. Specific to CONE, the number of generations (V in section 3.7) which
fitness progress can stagnate within one or more populations (n controllers) be-
fore the GD value is adapted (section 3.1.2) is presented as fitness stagnation
V in table 5.5. The number of generations (W in section 3.7) which fitness
can stagnate in any given population before the number of sub-populations is
adapted (section 3.6), is presented as fitness stagnation W in table 5.5.

5.4 Multi-Rover Task Results

This section describes task performance results yielded from three multi-rover
experiment sets. Caste refers to a set of rovers within a given team that are
specialized to the same behavioral role [83].

1. Experiment Set 1: Illustrates that complex environments1 environments
are appropriate for encouraging behavioral specialization during controller
evolution. Experiment set 1 compares task performance results between
teams evolved in simple2 and complex environments.

2. Experiment Set 2: Investigates the research hypotheses (section 1.2) via
indicating that CONE evolves teams that yield a higher task performance
comparative to the task performance yielded by teams evolved by related
methods. These related methods are: HomCNE, HetCNE, CCGA, and
Multi-Agent ESP. Experiment set 2 compares the task performance results
of teams evolved within the complex environment set.

3. Experiment Set 3: Investigates the research hypotheses (section 1.2) via
elucidating that CONE is consistently able to derive a level of behavioral
specialization as mandated by the task and the environment. Experiment
set 3 shows that specialization results in a higher team task performance
comparative to related methods. Experiment set 3 compares the task
performance results between teams evolved within the extended complex
environment set (an extension of the complex environment set).

One experiment consists of the evolving teams using each NE method in a
given environment. Each experiment consists of two distinct phases.

• Evolution phase: The controllers of a rover team are evolved for 250 gen-
erations (table 5.5) using a given NE method, and a given environment.

• Testing phase: The fittest n controllers (team) are selected and set to
execute in the same environment for one rover lifetime. The testing phase
does not evolve controllers, so during this phase each the evolved connec-
tion weights of each controller remains static. Task performance results
presented in this chapter are averages calculated over 20 runs of the fittest
controllers in a test environment.

1 The terms complex environment set and complex environments are used interchangeably.
2 The terms simple environment set and simple environments are used interchangeably.



5. Collective Behavior Case Study: Multi-Rover 95

In order to compare the task performances results yielded by two rover teams
a statistical comparison is conducted between two given sets of task performance
data. The following procedure is followed.

• The Kolmogorov-Smirnov test [48] is applied to each of the data sets in
order to check if the data sets conform to normal distributions.

• To determine if there is a statistically significant difference between task
performance results of any two teams evolved by given methods, an inde-
pendent t-test [48] is applied. The threshold for statistical significance is
0.05, and the null hypothesis is that data sets do not significantly differ.

The results of all statistical comparisons conducted in this chapter are pre-
sented in appendix C.

5.4.1 Experiment Set 1: Environments Appropriate for Behavioral
Specialization

This experiment set tests the evolution of teams in two sets of simulation envi-
ronments. It is hypothesized that the first environment set does not encourage
emergent behavioral specialization, and the second environment set does en-
courage specialization, during controller evolution.

• Simple environment set : Contains ten type E red rock distributions. Type
E red rocks are detectable by sensors operating at any setting (section
5.2.1). Given this, it is supposed that this environment set is not appro-
priate for encouraging specialization during controller evolution.

• Complex environment set3: Contains ten distributions of type [A, B, C,
D] red rocks. Type [A, B, C, D] red rocks are only detectable by at least
two rovers using complementary red rock detection sensor settings (section
5.1.5). Given this, it is supposed that this environment set is appropriate
for encouraging behavioral specialization.

Teams Evolved in Simple Environments

Rover teams are evolved using the HomCNE, HetCNE, CCGA, Multi-Agent
ESP and CONE methods, for each of the ten simple environments. For each en-
vironment, the average task performance yielded by evolved teams is calculated
over 20 experimental runs. Figures 5.8 and 5.9 present the average red rock
value detected and area covered, respectively, by HomCNE, HetCNE, CCGA,
Multi-Agent ESP and CONE evolved teams operating in each of the simple
environments. The behavioral composition of the fittest team evolved by each
method, for each simple environment, are presented in appendix C. Behavioral
composition refers to the composite number of rovers in a team that are non-
specialized or specialized to activating red rock detection sensors with either the
low-res, med-res, or hi-res settings.

3 The terms complex environment set and complex environments are used interchangeably.



5. Collective Behavior Case Study: Multi-Rover 96

Fig. 5.8: Average Red Rock Value Detected in Simple Environments. Comparative
results yielded by teams evolved by each method. Note the scale of the red
rock value detected axis extends to only 3500.

Fig. 5.9: Average Area Covered in Simple Environments. Comparative results yielded
by HomCNE, HetCNE, CCGA, MESP, and CONE evolved teams.



5. Collective Behavior Case Study: Multi-Rover 97

Teams Evolved in Complex Environments

Figures 5.10 and 5.11 present the average red rock value detected and area cov-
ered, respectively, for teams evolved by each method in the complex environ-
ments. Behavioral compositions of the fittest teams evolved by each method, in
the complex environments, are presented in appendix C.

Comparing Task Performance Results of Teams Evolved in Simple and
Complex Environments

A statistical comparison of task performance results yielded by teams evolved
by each method in the simple and complex environment sets, is conducted.

• First, a comparison is conducted between the average red rock value de-
tected by teams evolved with respective methods in the simple (figure 5.8)
and complex (figure 5.10) environments.

• Second, a comparison is conducted between the average area covered by
teams evolved with respective methods in the simple (figure 5.9) and com-
plex (figure 5.10) environments.

Data sets of teams evolved by each method (presented in figures 5.8, 5.9,
5.10, and 5.11) were found to conform to normal distributions via applying
the Kolmogorov-Smirnov test. A statistical comparison between the average
red rock value detected and area covered for teams evolved in the simple and
complex environments is presented in appendix C.

Results Summary: Teams Evolved in Simple and Complex Environments

A Comparison of task performances yielded by teams evolved in the simple and
complex environment sets, indicate the following results.

1. The average red rock value detected by teams evolved by CCGA, Multi-
Agent ESP, and CONE in complex environments is significantly higher
than the average red rock value detected by teams evolved by CCGA,
Multi-Agent ESP, and CONE in simple environments. This result indi-
cates that the complex environments are appropriate for evolving teams
using CCGA, Multi-Agent ESP, and CONE, given that these teams yield
a higher average red rock value detected comparative to teams evolved by
the same methods in simple environments.

2. A comparison of behavioral compositions of the fittest teams evolved by
CCGA, Multi-Agent ESP, and CONE in simple, and complex environ-
ments, indicates that the complex environments are appropriate for en-
couraging the evolution of multiple complementary castes. In the case of
teams evolved by HomCNE and HetCNE in simple and complex environ-
ments, teams consisting of a single rover caste were evolved.



5. Collective Behavior Case Study: Multi-Rover 98

Fig. 5.10: Average Red Rock Value Detected in the Complex Environments. Compar-
ative results yielded by teams evolved by each method. Note the scale of
the red rock value detected axis extends to only 4500.

3. There is no significant difference between the average red rock value de-
tected by teams evolved by HomCNE and HetCNE in both simple and
complex environments.

4. There is no significant difference between the average area covered by
teams evolved by HomCNE, HetCNE, CCGA, Multi-Agent ESP, and
CONE in a majority of the simple and complex environments.

Furthermore, results 1 through to 4 indicate that the complex environments
are appropriate for evolving teams composed of complementary behavioral spe-
cializations, where such specializations result in a higher task performance com-
parative to teams evolved in simple environments. Further analysis of these
results is present in section 5.5.1.

5.4.2 Experiment Set 2: Teams Evolved within the Complex Environment Set

This section presents the results of applying HomCNE, HetCNE, CCGA, Multi-
Agent ESP and CONE in order to evolve teams in the complex environments.
Figures 5.10 and 5.11 present the average red rock value detected and area cov-
ered, respectively, for teams evolved by each method in the complex environment
set. The behavioral compositions of the fittest teams evolved by each method
in the complex environments are presented in appendix C.



5. Collective Behavior Case Study: Multi-Rover 99

Fig. 5.11: Average Area Covered in the Complex Environments. Comparative results
yielded by teams evolved by each method.

Comparing Teams Evolved in the Complex Environment Set

A statistical comparison of task performance results yielded by teams evolved
using each method, in the complex environments, is conducted.

• First, a comparison is conducted between the average red rock value de-
tected by teams evolved with HomCNE, HetCNE, CCGA, Multi-Agent
ESP and CONE in the complex environments (figure 5.10).

• Second, a comparison is conducted between the average area covered by
teams evolved with HomCNE, HetCNE, CCGA, Multi-Agent ESP and
CONE in the complex environments (figure 5.11).

Appendix C presents statistical test results conducted for a comparison of
average red rock value detected and area covered by teams evolved by each
method in complex environments.

Results Summary: Comparing Teams Evolved in Complex Environments

Comparative task performances of teams evolved by each method in the complex
environments, indicate the following results.

1. For all complex environments, CONE evolved teams attained a signifi-
cantly higher average task performance, comparative to HomCNE, Het-
CNE, CCGA, and Multi-Agent ESP evolved teams. CCGA, Multi-Agent
ESP, and CONE evolved teams are comprised of complementary castes.



5. Collective Behavior Case Study: Multi-Rover 100

2. For each complex environment, HomCNE and HetCNE evolved teams
comprised of a single specialized or non-specialized caste.

3. For all complex environments, teams evolved by CCGA and Multi-Agent
ESP yield a comparable task performance.

4. For all complex environments, teams evolved by CCGA, Multi-Agent ESP,
and CONE yield a significantly higher average red rock value detected
comparative to HomCNE and HetCNE evolved teams.

5. For complex environments 7 and 9, teams evolved by HomCNE and CCGA
yielded a comparable area covered.

6. For complex environments [7, 10], teams evolved by HomCNE and MESP
yielded a comparable area covered.

7. For complex environments [7, 8], teams evolved by HetCNE and CCGA
yielded a comparable area covered.

8. For complex environments 7 and 9, teams evolved by HetCNE and MESP
yielded a comparable area covered.

Results 1 and 2 support the hypothesis that CONE facilitates an appropriate
level of behavioral specialization, where such specialization results in a higher
task performance, comparative to related methods. Result 3 indicates that the
HomCNE and HetCNE methods are not appropriate for deriving teams that
consist of a set of complementary castes. Result 4 indicates that the CCGA
and Multi-Agent ESP evolve teams with comparable task performances in a
majority of complex (nine out of ten) environments. Result 5 indicates that the
cooperative co-evolutionary methods (CCGA, Multi-Agent ESP, and CONE),
are effectively able to evolve teams that yield a significantly higher red rock
value detected comparative to the single population conventional NE methods
(HomCNE and HetCNE) in all complex environments. Results 6 through to
9 indicate that the CCGA and Multi-Agent ESP yield no advantage over the
CNE methods in terms of area covered by evolved teams.

5.4.3 Experiment Set 3: Teams Evolved within the Extended Complex
Environment Set

This section presents the results of applying HomCNE, HetCNE, CCGA, Multi-
Agent ESP and CONE to evolve rover teams in an extended complex environ-
ment set. The purpose of these environments was to test the impact of different
quantities of each red rock type upon controller evolution. The complex envi-
ronments contained an equal number of each red rock type (table 5.6). The
extended complex environments contain different combinations of quantities of
type [A, B, C, D] red rocks (table 5.6). Also, in the extended complex environ-
ments the location of red rocks in each environment is the same as environment
10 in the simple and complex environments (figure 5.5). Environment 10 was



5. Collective Behavior Case Study: Multi-Rover 101

Tab. 5.6: Distribution of Red Rock Types per Environment Set: Each environment is
defined by a different red rock distribution. ENV-SET: Environment Set.
SM: Simple Environment Set. CM: Complex Environment Set. ECM-x:
Extended Complex Environment x.

ENV-
SET

Type-A
Red
Rocks

Type-B
Red
Rocks

Type-C
Red
Rocks

Type-D
Red
Rocks

Type-E
Red
Rocks

Red
Rock
Value

CM 0 0 0 0 5000 5000

SM 500 500 500 500 0 5000

ECM-1 3502 250 166 125 0 5000

ECM-2 500 1750 166 125 0 5000

ECM-3 502 250 1166 125 0 5000

ECM-4 502 250 166 875 0 5000

ECM-5 2000 500 250 125 0 5000

ECM-6 1001 1000 333 250 0 5000

ECM-7 1002 500 666 250 0 5000

ECM-8 1001 500 333 500 0 5000

ECM-9 2500 1250 0 0 0 5000

ECM-10 1 0 833 625 0 5000

selected given that the highest average task performance was achieved in this
environment for teams evolved by all methods (figures 5.10 and 5.11). The total
value of all red rocks sums to 5000 (table 5.6). As an extension to the com-
plex environments, the goal was to ascertain if specialized behaviors would still
emerge in environments where the quantity of each red rock type varies between
environments, but the structure and distribution of red rocks remains the same.

Teams Evolved in Extended Complex Environments

Rover teams are evolved using HomCNE, HetCNE, CCGA, Multi-Agent ESP
and CONE, for each extended complex environment. For each environment, the
average task performance yielded by evolved teams is calculated over 20 exper-
imental runs. Figures 5.12 and 5.13 present the average red rock value detected
and area covered, respectively, for teams evolved by each method. Behavioral
compositions of the fittest teams evolved by each method in the extended com-
plex environments are presented in appendix C.

Comparing Results of Teams Evolved in Extended Complex Environments

A statistical comparison between the task performance results yielded by teams
evolved in the extended complex environment set is conducted.

• First, a comparison is conducted between the average red rock value de-
tected by teams evolved with HomCNE, HetCNE, CCGA, Multi-Agent



5. Collective Behavior Case Study: Multi-Rover 102

Fig. 5.12: Average Red Rock Value Detected in Extended Complex Environments.
Comparative results yielded by teams evolved by each method. Note the
scale of the red rock value detected axis extends to only 4500.

Fig. 5.13: Average Area Covered in Extended Complex Environments. Comparative
results yielded by teams evolved by each method.



5. Collective Behavior Case Study: Multi-Rover 103

ESP and CONE in the extended complex environment set (figure 5.12).

• Second, a comparison is conducted between the average area covered by
teams evolved with HomCNE, HetCNE, CCGA, Multi-Agent ESP and
CONE in the extended complex environment set (figure 5.13).

Data sets of the HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams presented in figures 5.12 and 5.13, are found to conform to normal
distributions via applying the Kolmogorov-Smirnov test. Appendix C presents
statistical test results for comparisons between the average red rock value de-
tected by teams evolved by each method.

Results Summary: Rover Teams Evolved in Extended Complex Environments

Statistical comparisons of task performances for teams evolved in the extended
complex environments, indicate the following results.

1. The average red rock value detected by CONE evolved teams is significantly
higher than that of teams evolved by comparative methods.

2. Teams evolved by CCGA, Multi-Agent ESP and CONE are comprised
of complementary castes. Behavioral compositions of the fittest evolved
teams are presented in appendix C.

3. Teams evolved by CCGA and Multi-Agent ESP yield a comparable red
rock value detected. However, there is a significant difference between the
area covered by these teams for environments [1, 3, 5, 7, 10].

4. Area covered by HomCNE evolved teams is significantly lower comparative
to that of teams evolved by CCGA in environments [3, 6, 7].

5. Area covered by HetCNE evolved teams is significantly lower comparative
to that of teams evolved by CCGA in environments [6, 7].

6. Area covered by HomCNE evolved teams is significantly lower comparative
to that of Multi-Agent ESP evolved teams in environments 3 and 7.

7. Area covered by HetCNE evolved teams is significantly lower comparative
to that of Multi-Agent ESP evolved teams in environments [7, 8].

8. Teams evolved by CCGA, Multi-Agent ESP, and CONE yield a signif-
icantly higher average red rock value detected comparative to HomCNE
and HetCNE evolved teams. Also, HomCNE and HetCNE evolves teams
comprised of either a single specialized or non-specialized caste.

Results 1 and 2 support the hypotheses that CONE is appropriate for fa-
cilitating emergent behavioral specialization, where such specialization results
in a higher task performance comparative to related methods. Result 3 indi-
cates that the CCGA and Multi-Agent ESP methods yield a comparable task
performance for a majority (nine out of ten) extended complex environments.
Results 4 to 8 indicate that CCGA, Multi-Agent ESP, and CONE out-perform
the CNE methods in all extended complex environments.



5. Collective Behavior Case Study: Multi-Rover 104

5.5 Discussion of Multi-Rover Experimental Results

This analysis investigates the hypothesis that CONE facilitates a degree of be-
havioral specialization appropriate for achieving a higher task performance com-
parative to related methods. Sections 5.5.1, 5.5.2, 5.5.3, and 5.5.4 describe an
analysis that evaluates the contribution of emergent behavioral specialization
to collective red rock detection behaviors. Section 7.2.2 describes an analysis
of the function and contributions of the genotype and specialization metrics to
emergent behavioral specialization in CONE evolved teams.

5.5.1 Behavioral Specialization in the Multi-Rover Task

In order to illustrate that emergent specialization is beneficial in the multi-rover
task, a set of experiments, conducted in section 5.4.1, highlighted that the com-
plex environments were appropriate for encouraging behavioral specialization
during controller evolution. The fittest teams evolved by CCGA, Multi-Agent
ESP and CONE in the complex environments consisted of multiple complemen-
tary castes. However, the emergence of such castes did not occur in the fittest
HomCNE and HetCNE evolved teams. Furthermore, the red rock value detected
by teams evolved by CCGA, Multi-Agent ESP and CONE in the complex en-
vironments was significantly higher comparative to the red rock value detected
by teams evolved in the simple environments. This indicates that the multi-
ple population architecture and cooperative co-evolutionary nature of CCGA,
Multi-Agent ESP, and CONE are better suited for attaining collective behavior
solutions in the complex environments. That is, the complex environments serve
to encourage emergent specialization and increases the red rock value detected
by such teams. This is supported by the multiple complementary castes derived
by CCGA, Multi-Agent ESP and CONE (appendix C) in the complex environ-
ments, and the corresponding task performances of the fittest teams evolved by
CCGA, Multi-Agent ESP and CONE in these environments.

The advantage of applying CCGA, Multi-Agent ESP and CONE to the
multi-rover task in the complex environments, is evident from examining the
mechanism used for genotype selection and the multiple population architec-
ture. The CCGA, Multi-Agent ESP and CONE methods construct a team of
n rovers via selecting and decoding a single genotype from each of n popula-
tions. In a cooperative co-evolutionary process, the controllers corresponding
to these genotypes are evaluated in the multi-rover task. Different fitness val-
ues are assigned to different genotypes based upon the success of corresponding
controllers over the course of rover lifetimes. This encourages the evolution of
complementary (and sometimes specialized) behaviors.

This is not the case for rover teams evolved by HomCNE and HetCNE in the
complex environments. The HomCNE method constructs a team of n rovers via
selecting, decoding and cloning a single genotype n times from one population.
The HetCNE method constructs a team of n rovers via selecting, decoding
n different genotypes from one population. Genotype selection from a single
population encourages all controllers in a team to converge to a single behavior



5. Collective Behavior Case Study: Multi-Rover 105

that effectively accomplishes the multi-rover task. This statement is supported
and exemplified by the emergent single caste in the fittest teams evolved by
HomCNE and HetCNE in the complex environments (appendix C), and the
comparatively low task performances of HomCNE and HetCNE evolved teams
(figures 5.10 and 5.8).

5.5.2 Analysis of Evolution in Complex Environments

Task performance results presented in figures 5.10, 5.11, 5.12, and 5.13 and the
supporting statistical comparison presented in appendix C indicate the average
task performance of CONE evolved teams is significantly higher than the av-
erage task performance of HomCNE, HetCNE, CCGA, and Multi-Agent ESP
evolved teams. The fittest team evolved by CONE for each environment is com-
prised of one non-specialized and multiple specialized castes. Specialized castes
are those rovers specialized to low-res, med-res, and hi-res red rock detection
behavior. This result supports the hypothesis that CONE is appropriate for
evolving behavioral specialization such that a higher collective behavior task
performance, comparative to related methods, is achieved.

Also, the fittest teams evolved by CCGA and Multi-Agent ESP in each com-
plex environment (appendix C) are similarly comprised of one non-specialized
caste and a combination of either low-res, med-res, or hi-res detector castes. The
evolution of such castes in the fittest teams evolved by CCGA, Multi-Agent ESP
and CONE in complex environments, was a consequence of the multi-population
architecture, the mechanism to select genotypes and create rover teams, and the
multi-rover task and environment constraints.

The Role of Castes

The emergence of non-specialized and specialized castes in the fittest CCGA,
Multi-Agent ESP, and CONE evolved teams is attributed to the multi-rover
task collective behavior requirement. At least two rovers are required in order
to detect a red rock. In order for rovers to detect an optimal value of red rocks,
teams are required to adopt specializations to different detection sensor settings.
This in turn results in the emergence of low-res, med-res, hi-res detector and
non-specialized castes. There is a non-specialized caste in each of the fittest
teams for each complex environment (appendix C). This non-specialized caste
is a result of rovers that frequently switch between executing low-res, med-res,
and hi-res red rock detection, as well as move behaviors.

It is theorized that the non-specialized caste complements the low-res, med-
res, and hi-res castes for the purpose of detecting a high value of red rocks. When
coupled with a specialized rover, a non-specialized rover provides the necessary
second detection sensor setting in order that a red rock can be detected. This is
supported by the caste lesion study presented in section 5.5.3. The caste lesion
study elucidates that castes provide behavioral contributions that are essential
in order for the fittest CCGA, Multi-Agent ESP and CONE evolved teams to
achieve a near optimal task performance.



5. Collective Behavior Case Study: Multi-Rover 106

5.5.3 Rover Caste Lesion Study

The goal of the caste lesion study is to ascertain the contribution of special-
ized and non-specialized castes to the task performance of the fittest teams.
The caste lesion study evaluates the fittest teams evolved by HomCNE, Het-
CNE, CCGA, Multi-Agent ESP, and CONE via systematically removing spe-
cialized and non-specialized castes and replacing them with specialized or non-
specialized heuristic controllers (section 5.2.5). Each lesioned team is then exe-
cuted in 20 new experimental runs for each complex environment. An average
red rock value detected and area covered is calculated over these 20 experimental
runs for each environment. The remainder of this section describes the proce-
dure followed for conducting a lesion study for each of the fittest teams evolved
by each method. For each of the fittest teams evolved by each method, castes are
removed and then re-evaluated in the environments in which they were evolved.
This means that castes within a fittest team are often re-evaluated in a subset
of the complex environment set. In the following env denotes environments.

• Fittest Teams Evolved by HomCNE:

– Env [1, 6]: Med-res detector caste is replaced with 20 med-res heuris-
tic controllers (table 5.3). These teams are executed in env [1, 6].

– Env [7, 10]: Hi-res caste is replaced with 20 hi-res heuristic controllers
(table 5.3). These teams are executed in env [7, 10].

• Fittest Teams Evolved by HetCNE: Env [1, 10]: Hi-res detector caste is
replaced with 20 hi-res heuristic controllers, and executed in env [1, 10].

• Fittest Teams Evolved by CCGA:

– Env [1, 4]: Low-res detector caste is replaced with low-res heuristic
controllers (table 5.3). These teams are executed in env [1, 4].

– Env [1, 8]: Med-res detector caste is replaced with med-res heuristic
controllers (table 5.3). These teams are executed in env [1, 8].

– Env [1, 10]: Hi-res detector caste is replaced with hi-res heuristic
controllers. These teams are executed in env [1, 10].

– Env [1, 10]: Non-specialized caste is replaced with non-specialized
heuristic controllers (table 5.3), and executed in env [1, 10].

• Fittest Teams Evolved by Multi-Agent ESP:

– Env [1, 3]: Low-res detector caste is replaced with low-res heuristic
controllers. These teams are executed in env [1, 3].

– Env [1, 10]: Med-res detector caste is replaced with med-res heuristic
controllers. These teams are executed in env [1, 10].

– Env [1, 10]: Hi-res detector caste is replaced with hi-res heuristic
controllers. These teams are executed in env [1, 10].



5. Collective Behavior Case Study: Multi-Rover 107

– Env [1, 10]: Non-specialized caste is replaced with non-specialized
heuristic controllers. These teams are executed in env [1, 10].

• Fittest Teams Evolved by CONE:

– Env [1, 10]: Low-res detector caste is replaced with low-res heuristic
controllers. These teams are executed in env [1, 10].

– Env [1, 10]: Med-res detector caste is replaced with med-res heuristic
controllers. These teams are executed in env [1, 10].

– Env [1, 10]: Hi-res detector caste is replaced with hi-res heuristic
controllers. These teams are executed in env [1, 10].

– Env [1, 10]: Non-specialized caste is replaced with non-specialized
heuristic controllers. These teams are executed in env [1, 10].

These results indicate that the task performance yielded by the fittest teams
evolved by CCGA, Multi-Agent ESP and CONE depend upon the behavioral
roles fulfilled by each of the castes and the interaction of these castes. These
results also indicate that the fittest CONE evolved teams are more reliant upon
the constituent specialized and non-specialized castes, comparative to the fittest
CCGA and Multi-Agent ESP evolved teams evolved in the same environments.
The task performance of the fittest CCGA and Multi-Agent ESP evolved teams
are more robust when castes are removed. That is, there is less of a reduction
in overall team task performance when either the non-specialized, low-res, med-
res, or hi-res detector castes are removed. This indicates that there is less of
an interdependency between constituent castes in the fittest CCGA and Multi-
Agent ESP teams. These teams do not rely as much as the fittest CONE evolved
teams upon the interactions of castes. Further analysis of the inter-dependency
between the specialized and non-specialized castes is presented as part of the
behavioral validation study in section 5.5.4. The smallest difference between
original task performance and the task performance of teams with a caste re-
moved was measured for the fittest HomCNE and HetCNE evolved teams. For
each complex environment, the task performances yielded by lesioned HomCNE
and HetCNE teams, was lower comparative to the original task performance
yielded by the fittest evolved teams. For both HomCNE and HetCNE lesioned
teams, the reduction in task performance was not as large as that measured
for the fittest CCGA, Multi-Agent ESP and CONE evolved teams, re-evaluated
with removed castes. This result supports previous work that indicated that a
rover team comprised of multiple complementary castes is mandated in order
to achieve a near optimal task performance.

5.5.4 Validating the Role of Behavioral Specialization

The purpose of the behavioral validation experiments is to test, in isolated exper-
iments, each of the rover behavioral specializations. Teams consisting entirely
of rovers specialized to one behavior are tested with the goal of demonstrat-
ing that such teams are insufficient for attaining an optimal task performance.



5. Collective Behavior Case Study: Multi-Rover 108

Tab. 5.7: Red Rock Value Detected by Fittest HomCNE Teams (with Lesioned Castes)
in Complex Environments: Results are percentages of original task perfor-
mance. Med-Res/Hi-Res Detectors: Rovers specialized to med-res and hi-res
detection, respectively. RRD: Red Rock Distribution. NA: Not Applicable.

RRD Med-Res Detector Hi-Res Detector

1 73.44 % 85.80 %

2 75.50 % 87.10 %

3 78.00 % 84.30 %

4 77.05 % 85.70 %

5 80.14 % 89.10 %

6 82.25 % 86.23 %

7 NA 81.45 %

8 NA 83.90 %

9 NA 84.07 %

10 NA 80.90 %

Tab. 5.8: Red Rock Detected by Fittest HetCNE Teams (with Lesioned Castes) in Com-
plex Environments: Results are percentages of original performance. Hi-Res
Detector: Specialized to hi-res detection. RRD: Red Rock Distribution.

RRD Hi-Res Detector

1 80.05 %

2 82.13 %

3 89.55 %

4 80.10 %

5 85.12 %

6 82.33 %

7 85.55 %

8 89.50 %

9 88.75 %

10 80.44 %



5. Collective Behavior Case Study: Multi-Rover 109

Tab. 5.9: Area Covered by Fittest HomCNE Evolved Teams (with Lesioned Castes)
in Complex Environments: Results are percentages of original task perfor-
mance. Med-Res/Hi-Res Detectors: Rovers specialized to med-res and hi-res
detection, respectively. RRD: Red Rock Distribution. NA: Not Applicable.

RRD Med-Res Detector Hi-Res Detector

1 83.86 % 79.70 %

2 85.10 % 78.31 %

3 84.04 % 80.13 %

4 85.15 % 84.27 %

5 83.94 % 85.15 %

6 88.56 % 83.25 %

7 NA 87.05 %

8 NA 88.98 %

9 NA 88.23 %

10 NA 85.76 %

Tab. 5.10: Area Covered by Fittest HetCNE Teams (with Lesioned Castes) in Complex
Environments: Results are percentages of original performance. Hi-Res
Detector: Specialized to hi-res detection. RRD: Red Rock Distribution.

RRD Hi-Res Detector

1 75.70 %

2 75.24 %

3 77.30 %

4 74.75 %

5 75.35 %

6 79.53 %

7 77.95 %

8 80.88 %

9 82.25 %

10 81.50 %



5. Collective Behavior Case Study: Multi-Rover 110

Tab. 5.11: Red Rock Value Detected by Fittest CCGA Teams (with Lesioned Castes) in
Complex Environments: Results are percentages of original performance.
Low-/Med-/Hi-Res Detectors: Rovers specialized to low-res, med-res, and
hi-res detection, respectively. Non-Specialized: Rovers not specialized to
any behavior. RRD: Red Rock Distribution. NA: Not Applicable.

RRD Low-Res
Detector

Med-Res
Detector

Hi-Res
Detector

Non-
specialized

1 78.24 % 68.38 % 55.20 % 97.78 %

2 89.75 % 59.81 % 57.72 % 95.22 %

3 90.05 % 74.93 % 59.23 % 75.97 %

4 96.98 % 67.97 % 58.46 % 67.74 %

5 NA 81.04 % 47.93 % 70.32 %

6 NA 86.22 % 49.15 % 62.51 %

7 NA 84.14 % 55.24 % 65.29 %

8 NA 80.87 % 57.48 % 59.73 %

9 NA NA 48.12 % 55.65 %

10 NA NA 43.34 % 60.22 %

Tab. 5.12: Area Covered by Fittest CCGA Evolved Teams (with Lesioned Castes) in
Complex Environments: Results are percentages of original task perfor-
mance. Low-/Med-/Hi-Res Detectors: Rovers specialized to low-res, med-
res, and hi-res detection, respectively. Non-Specialized: Rovers not special-
ized to any behavior. RRD: Red Rock Distribution. NA: Not Applicable.

RRD Low-Res
Detector

Med-Res
Detector

Hi-Res
Detector

Non-
specialized

1 85.14 % 79.82 % 66.42 % 98.88 %

2 96.17 % 70.21 % 68.25 % 97.92 %

3 95.96 % 83.30 % 71.22 % 86.74 %

4 98.19 % 78.79 % 69.60 % 75.13 %

5 NA 90.16 % 58.32 % 79.01 %

6 NA 95.07 % 62.35 % 74.75 %

7 NA 90.10 % 68.26 % 72.20 %

8 NA 88.72 % 70.04 % 76.32 %

9 NA NA 62.20 % 69.85 %

10 NA NA 55.94 % 75.20 %



5. Collective Behavior Case Study: Multi-Rover 111

Tab. 5.13: Red Rock Value Detected by Fittest MESP Teams (with Lesioned Castes) in
Complex Environments: Results are percentages of original performance.
Low-/Med-/Hi-Res Detectors: Rovers specialized to low-res, med-res, and
hi-res detection, respectively. Non-Specialized: Rovers not specialized to
any behavior. RRD: Red Rock Distribution. NA: Not Applicable.

RRD Low-Res
Detector

Med-Res
Detector

Hi-Res
Detector

Non-
specialized

1 85.04 % 69.98 % 65.32 % 74.20 %

2 78.95 % 72.26 % 62.07 % 78.89 %

3 79.58 % 68.35 % 70.18 % 75.13 %

4 NA 65.17 % 68.73 % 55.28 %

5 NA 69.43 % 55.30 % 47.21 %

6 NA 70.02 % 51.10 % 49.93 %

7 NA 77.25 % 65.33 % 46.78 %

8 NA 73.19 % 54.12 % 57.82 %

9 NA 74.13 % 60.98 % 51.58 %

10 NA 79.90 % 44.48 % 59.23 %

Tab. 5.14: Area Covered by Fittest MESP Evolved Teams (with Lesioned Castes) in
Complex Environments: Results are percentages of original task perfor-
mance. Low-/Med-/Hi-Res Detectors: Rovers specialized to low-res, med-
res, and hi-res detection, respectively. Non-Specialized: Rovers not special-
ized to any behavior. RRD: Red Rock Distribution. NA: Not Applicable.

RRD Low-Res
Detector

Med-Res
Detector

Hi-Res
Detector

Non-
specialized

1 90.12 % 78.80 % 76.37 % 85.10 %

2 86.51 % 81.20 % 73.12 % 85.21 %

3 85.82 % 80.55 % 82.28 % 89.87 %

4 NA 76.75 % 79.83 % 68.80 %

5 NA 80.49 % 68.35 % 59.96 %

6 NA 86.20 % 67.77 % 60.19 %

7 NA 85.58 % 74.03 % 57.27 %

8 NA 79.90 % 65.20 % 68.98 %

9 NA 85.92 % 70.25 % 58.90 %

10 NA 88.20 % 49.76 % 67.78 %



5. Collective Behavior Case Study: Multi-Rover 112

Tab. 5.15: Red Rock Value Detected by Fittest CONE Evolved Teams (with Lesioned
Castes) in Complex Environments: Results are percentages of original task
performance. Low-/Med-/Hi-Res Detectors: Rovers specialized to low-res,
med-res, and hi-res detection, respectively. Non-Specialized: Rovers not
specialized to any behavior. RRD: Red Rock Distribution.

RRD Low-Res
Detector

Med-Res
Detector

Hi-Res
Detector

Non-
specialized

1 40.35 % 34.72 % 35.95 % 61.90 %

2 42.50 % 30.05 % 32.60 % 75.15 %

3 45.72 % 42.02 % 30.08 % 68.78 %

4 44.80 % 39.77 % 29.68 % 65.16 %

5 43.53 % 44.67 % 33.55 % 50.85 %

6 50.21 % 45.20 % 39.26 % 52.36 %

7 48.78 % 49.53 % 31.58 % 47.65 %

8 47.12 % 43.29 % 28.98 % 51.10 %

9 57.95 % 42.11 % 20.79 % 45.58 %

10 52.26 % 43.93 % 21.02 % 48.20 %

Tab. 5.16: Area Covered by Fittest CONE Evolved Teams (with Lesioned Castes) in
Complex Environments: Results are percentages of original task perfor-
mance. Low-/Med-/Hi-Res Detectors: Rovers specialized to low-res, med-
res, and hi-res detection, respectively. Non-Specialized: Rovers not special-
ized to any behavior. RRD: Red Rock Distribution.

RRD Low-Res
Detector

Med-Res
Detector

Hi-Res
Detector

Non-
specialized

1 54.55 % 48.72 % 55.98 % 79.80 %

2 52.35 % 43.13 % 49.67 % 88.98 %

3 55.72 % 47.02 % 33.15 % 71.00 %

4 53.28 % 51.16 % 39.62 % 69.05 %

5 57.02 % 50.97 % 40.03 % 61.25 %

6 52.29 % 49.82 % 35.12 % 67.73 %

7 58.03 % 44.95 % 39.98 % 65.13 %

8 50.92 % 48.90 % 38.22 % 64.91 %

9 59.86 % 49.18 % 39.03 % 65.28 %

10 52.26 % 43.93 % 40.19 % 68.30 %



5. Collective Behavior Case Study: Multi-Rover 113

The behavioral validation experiments elucidate that the fittest teams consist
of rovers specialized to different and complementary behavioral specializations.
The behavioral validation experiments evaluate the contribution of each rover
behavior to a team’s collective behavior performance.

1. Behavioral Validation Experiment 1: Executes a team where each rover
uses the fittest controller specialized to the low-res detection behavior.
This team is a Low-Res Detector Team.

2. Behavioral Validation Experiment 2: Executes a team where each rover
uses the fittest controller specialized to the med-res detection behavior.
This team is a Med-Res Detector Team.

3. Behavioral Validation Experiment 3: Executes a team where each rover
uses the fittest controller specialized to the hi-res detection behavior. This
team is a Hi-Res Detector Team.

4. Behavioral Validation Experiment 4: Executes a team using only the
fittest non-specialized controller. This team is a Non-Specialized Team.

Figures 5.14 and 5.15 present the task performance results of low-res, med-
res, hi-res detector, and non-specialized teams evaluated for these behavioral
validation experiments. For each behavioral validation experiment, each rover
in a team was set with an identical behavior. This was done as follows. A
rover was initialized with the controller selected from the fittest team evolved
by a given method. This selected controller is the fittest that exhibits either a
specialized low-res, med-res or hi-res detection behavior, or no specialization.
These controllers are always selected from the fittest teams evolved by CONE,
since these teams yielded the highest task performance in all environments. For
each experiment, each selected controller is cloned 20 times in order to create
either a non-specialized, low-res, med-res, or hi-res detector team. Each team is
then executed in each of the complex environments. The average red rock value
detected and area covered by the team is calculated over 20 experimental runs
for each of the environments. For each behavioral validation experiment, rovers
are placed in random locations and executed for one rover lifetime.

The behavioral validation experiments do not employ any methods for adap-
tation of controllers. Thus, the task performance achieved by the specialized
and non-specialized teams results from the interactions of individual rover be-
haviors. Teams consisting entirely of rovers specialized to the move behavior
are not tested, given that the move action does not directly contribute to task
performance. That is, only behaviors corresponding to the activation of red
rock detection sensors directly contributes to rover team task performance.

Comparisons for Behavioral Validation

This section presents the results of statistical tests that compare the task per-
formances of non-specialized and specialized teams (section 5.5.4) with that of
evolved teams. For simplicity, the non-specialized and specialized teams are



5. Collective Behavior Case Study: Multi-Rover 114

Fig. 5.14: Red Rock Value Detected by Teams of Clones in the Complex Environments.
Teams consist only of non-specialized or specialized rovers.

Fig. 5.15: Area Covered by Teams of Clones in the Complex Environments. Teams
consist only of non-specialized or specialized rovers.



5. Collective Behavior Case Study: Multi-Rover 115

referred to as cloned teams. Task performance data sets of the cloned teams
were found to conform to normal distributions via applying the Kolmogorov-
Smirnov test. The results of statistical task performance comparisons between
cloned and evolved teams is presented in appendix C.

Results of Behavioral Validation Experiments

Results of the behavioral validation experiments indicate that teams consisting
of rovers with the same behavior are insufficient for achieving a task perfor-
mance comparable to that achieved by evolved teams. That is, the average task
performance of cloned teams is significantly lower comparative to the average
task performance of CCGA, Multi-Agent ESP, and CONE evolved teams (ap-
pendix C). These results support the statement that the high task performance
yielded by the fittest CCGA, Multi-Agent ESP, and CONE evolved teams is a
consequence of the interaction between non-specialized and specialized castes
(section 5.5.3). In support of this, there was no significant difference between
the average red rock value detected by non-specialized and med-res detector
teams, and teams evolved by HomCNE (containing a single caste), for complex
environments [1, 6]. There was no significant difference between the average red
rock value detected by non-specialized and hi-res detector teams, and teams
evolved by HomCNE (containing a single caste), for environments [7, 10]. Sim-
ilarly, there was no significant difference between the average red rock value
detected by hi-res teams, and teams evolved by HetCNE (containing a single
caste), for environments [1, 6]. Also, there was no significant difference between
the average red rock value detected by non-specialized teams, and teams evolved
by HetCNE, for environments [7, 10].

This result was expected since the fittest HomCNE and HetCNE evolved
teams consisted of rovers specialized to the med-res (or hi-res for HetCNE
evolved teams) detection for environments [1, 6], and rovers specialized to hi-res
detection for environments [7, 10] (appendix C). The comparable performance
between non-specialized and specialized cloned teams indicates that rovers spe-
cialized to one behavior are not able to achieve the task performance achieved
by the fittest HomCNE and HetCNE evolved teams.

5.5.5 The Role of Difference Metrics in CONE

This section investigates the efficacy of the Genotype Difference Metric (GDM)
and Specialization Difference Metric (SDM) for facilitating behavioral special-
ization, and increasing task performance in CONE evolved teams. The following
three variants of CONE are executed in the same experimental setup.

1. CONE without GDM (CONE-1): Teams are evolved using CONE with-
out the GDM meaning that genotype recombination only occurs within
populations. The SDM remains active.

2. CONE without SDM (CONE-2): Teams are evolved using CONE without
the SDM. The GDM remains active.



5. Collective Behavior Case Study: Multi-Rover 116

Fig. 5.16: Red Rock Value Detected by Teams Evolved by CONE Variants in Complex
Environments. Results of teams evolved by CONE-1, CONE-2 or CONE-3.
Note that the red rock detected axis range is: [1000, 4500].

Fig. 5.17: Area Covered by Teams Evolved by CONE Variants in Complex Environ-
ments. Results of CONE-1, CONE-2, CONE-3 evolved teams.



5. Collective Behavior Case Study: Multi-Rover 117

3. CONE without GDM and SDM (CONE-3): Teams are evolved using
CONE without both the GDM and SDM.

Figure 5.16 presents the average red rock value detected by teams evolved
using the CONE variants (CONE-1, CONE-2, CONE-3), for all complex envi-
ronments. Figure 5.17 presents the average area covered by teams evolved using
CONE-1, CONE-2 and CONE-3, for all complex environments. These task
performance results are averaged over 20 experimental runs. For comparison,
results previously attained by CONE evolved teams are also presented in figures
5.16 and 5.17. Data sets of CONE-1, CONE-2, and CONE-3 evolved teams were
found to conform to normal distributions via applying the Kolmogorov-Smirnov
test. A statistical comparison between the task performances of teams evolved
by the CONE variants and CONE is presented in appendix C. This compari-
son indicates that, for all complex environments, there is a significant difference
between the task performances of teams evolved by CONE, and that of teams
evolved by CONE-1, CONE-2, and CONE-3. Teams evolved by CONE yield a
performance advantage over the CONE variants.

This result supports the hypothesis that both the GDM and SDM are bene-
ficial in terms of increasing task performance in CONE evolved teams. Without
either the GDM or SDM, the CONE evolved teams lose their advantage of a sig-
nificantly higher task performance. Furthermore, the caste lesion study (section
5.5.3) supports the hypothesis that the GDM and SDM enables CONE to evolve
behavioral specialization that achieves a higher task performance, comparative
to related methods. In this case, the behavioral specialization takes the form of
a set of complementary and interacting rover castes.

5.6 Conclusions

This chapter investigated the application of CONE for evolving collective be-
haviors in a team of simulated rovers. The multi-rover task stipulated that
a team must maximize the value of features of interest (red rocks) coopera-
tively detected in an environment. CONE was successful for evolving collective
behaviors that out-performed teams evolved by comparative controller design
methods. CONE evolved teams consisting of complementary behavioral special-
izations. An analysis indicated these specializations were necessary for a high
task performance to be achieved. The next collective behavior case study is the
Gathering and Collective Construction (GACC) task, which is an extension of
the multi-rover task. The GACC task uses a greater number of controllers and
requires more complex forms of collective behavior.



6. COLLECTIVE BEHAVIOR CASE STUDY: GATHERING
AND COLLECTIVE CONSTRUCTION

Gathering and Collective Construction (GACC) is a simulation of a multi-robot
system operating in a continuous environment that attempts to solve a collective
behavior task. The nature of the GACC task draws inspiration from biological
collective behavior systems [17]. The GACC task is designed with potential
applications that include the cooperative construction of complex structures in
hazardous or uninhabitable environments, such as underwater human habitats
or orbiting space stations [183]. The GACC task is an extension of the multi-
rover task (chapter 5) that includes two additional components.

1. Atomic Object Detection and Gathering: The first component is the de-
tection, and transportation of (gathering) atomic objects1 to a home area
within the confines of a simulation environment.

2. Complex Object Construction: The second component is the use of gath-
ered atomic objects as the building blocks for the construction of a complex
object at a construction zone within the home area2.

Specifically, in the GACC task, a team of simulated robots search for, and
transport atomic objects towards a construction zone within a home area. In
order to be accomplished, the GACC task has the following requirements.

1. Gathered atomic objects are transported to a home area. The home area
contains a smaller area within called the construction zone. Complex
objects are constructed at the construction zone.

2. At least two robots are required in order to cooperatively transport objects
from where they are detected in the environment, to the construction zone.

3. Atomic objects must be cooperatively transported to the construction zone
in a particular sequence. A particular sequence is required in order that
a complex object be constructed at the construction zone.

The performance measure of a team attempting to solve the GACC task, is
the number of atomic objects delivered in the correct sequence to the construc-
tion zone. This in turn determines the total number of complex objects that
are constructed over the course of the team’s lifetime.

1 Throughout this chapter the terms atomic objects and objects are used interchangeably.
Both refer to objects that are used as the building blocks of complex objects.

2 The terms construction zone and home area are used interchangeably.



6. Collective Behavior Case Study: Gathering and Collective Construction 119

This chapter is structured as follows. Section 6.1 describes the GACC task.
Section 6.2 describes the sensors, actuators and controllers used by robots. Sec-
tion 6.3 describes the experimental setup of the GACC task. Section 6.4 de-
scribes experimental results yielded from applying various NE methods in order
to evolve collective behavior. Section 6.5 presents an analysis and discussion of
results. Section 6.6 presents the chapter’s conclusions.

6.1 Gathering and Collective Construction (GACC) Task

6.1.1 Specialization in the GACC Task

Behavioral specialization as part of controller behavior, and overall team behav-
ior is mandated in order to optimally accomplish the GACC task. An optimal
task performance is defined as the delivery of all atomic objects in the envi-
ronment, in the correct sequence, to the construction zone, and the subsequent
construction of the maximum number of complex objects from these atomic ob-
jects. To illustrate the benefit of specialization, consider the following descrip-
tion of the GACC task. In an environment, there is a set of Q atomic objects of
n different types, which robots have to detect, and cooperatively transport to a
construction zone. n is the total number of object types. Complex objects need
to be assembled from a given set of atomic objects at the construction zone.
The construction zone is at the center of the home area. A complex object is
defined as a combination of m different atomic object types, where m ≤ n. Each
atomic object must be delivered to the construction zone in a predefined order
[a, b,...,z], where a, b and z is the number of each object type in a sequence of
object types that are to be delivered to the construction zone.

At least two robots are required to transport an object to the construction
zone. Delivery of an object to the construction zone, where the object is the
next required object type in predefined sequence, represents one step in the
construction process of a complex object. All robots in the simulation are mor-
phologically identical. However, robot controllers are behaviorally heterogenous,
and each controller retains the capability to specialize to detecting or gathering
different object types. Initially each robot in the team adopts a behavior such
that it searches for and gathers objects of any type. Although, this is not an
optimal complement of behavioral roles if there are differing numbers of each
object type. For example, consider an environment where there are two object
types A and B, and where object type A is particularly scarce, and object type
B is plentiful. Given that the object type sequence required in order to con-
struct a complex object first requires the delivery of a set of type A objects, and
then a set of type B objects to the construction zone, then an appropriate team
behavioral composition is for most robots to search for type A objects, and a
few robots to search for type B objects.



6. Collective Behavior Case Study: Gathering and Collective Construction 120

Defining Behavioral Specialization in the GACC Task

Specialization is measured with respect to individual controller behavior. Spe-
cialization is defined by applying the behavioral specialization metric (section
3.2.1) to a given controller’s behavior. This specialization metric calculates a
degree of specialization (S ) for a given behavior. If S < 0.5 for a given behav-
ior, the robot is labeled as specialized. If S ≥ 0.5 then the robot’s behavior is
labeled as non-specialized. Given that a behavior is defined as specialized, then
the specific label given to a specialization corresponds to the action that is most
executed over the course of the the robot’s lifetime. In terms of the GACC task,
this implies that a specialized robot is generally categorized as either a detector,
gatherer, or constructor. A specialization is defined in the case that a robot ex-
ecutes a given detection, gathering or construction behavior, such that, over the
course of the robot’s lifetime, this behavior is executed for a time that exceeds
the time dedicated to the execution of any other action. These specializations
are described in the following, where x ∈ A, B, C (the set of object types).

• Object-x Detector: A robot that specializes to activating it’s object detec-
tion sensors with setting x.

• Object-x Gatherer: A robot that specializes to activating it’s gripper with
setting x, and then moves with a gripped type x object,

• Object-x Constructor: An object x gatherer that specializes to correctly
delivering type x objects to the construction zone.

6.1.2 GACC Simulation Environments

A GACC environment is defined by the following features.

1. Home Area / Construction Zone: The home area is at the environment’s
center. The construction zone is a smaller area within the home area, and
is where complex objects are constructed. The home area is where gath-
ered objects that are not ready to be used in construction, are dropped.
Figure 6.1 illustrates the home area and the construction zone.

2. A Set of Complex Objects (P): P is to be constructed from q objects,
where there are n objects in total. A complex object in P is comprised
of a subset of all objects (Q). There are p subsets in Q. Each of the p
subsets corresponds to a complex object. Each complex object consists of
a predefined order of m different objects, where m ≤ n.

3. Complex Object Construction: Requires that at least two robots coopera-
tively deliver an object to the construction zone, where this object is the
next required in a predefined sequence.

4. Atomic Objects: A set of q objects, of n different types are randomly
distributed throughout the environment, but not in the home area.



6. Collective Behavior Case Study: Gathering and Collective Construction 121

Fig. 6.1: Example GACC Simulation Environment. A screen shot of the simulation
environment. The brown area is the home area. The white area at the
center of the home area is the construction zone. The construction zone is
the foundation for the construction of one or more complex objects. A set
of atomic objects must be delivered in a given sequence of object types in
order for a complex object to be constructed. In this example, robot 2 (red)
is gripping a type A object and awaiting assistance from robot 1 (grey) in
order to deliver the type A object to the construction zone. Robot 0 (green)
is searching for type B objects whilst avoiding obstacles. The label in the
construction zone 211 indicates that the complex object being constructed
requires a type C object (labeled by identifier: 2), and then two type B
objects (labeled by identifier: 1) in order to be completed.



6. Collective Behavior Case Study: Gathering and Collective Construction 122

Tab. 6.1: Detection and Transportation of Objects. Required sensor and gripper set-
tings depend upon the object type.

Object
Type

Required Detection
Sensor Setting

Required Gripper
Setting

Robots to
Transport /
Construct

A Detection Setting A Gripper Setting A 2

B Detection Setting B Gripper Setting B 3

C Detection Setting C Gripper Setting C 4

5. Obstacles: Obstacles are placed randomly in the environment, but not in
the home area. These obstacle represent blind spots that block the fields
of view of a robot’s object detection sensors.

Robots in the GACC Environment

Robots operate in a continuous bounded two dimensional environment. Only
one robot can occupy any given x, y position in the environment. Movement is
calculated in terms of real valued vectors. In order to calculate the distances
between robots and objects or obstacles, the squared Euclidean norm, bounded
by a minimum observation distance δ2min, is used (equation 6.1).

δ(p, q) = min(∥x− y∥2, δ2min) (6.1)

Atomic Objects and Distribution of Atomic Objects

There is a set of q atomic objects placed in random locations throughout the
environment, except in the home area. These objects are referred to as atomic
objects since they are used in the construction of one or more complex objects.
For this set of q atomic objects, there is a distribution n different object types.
There are three different atomic object types: [A, B, C]. These object types
are only detectable by detection sensors with settings A, B, and C, respectively.
Type A, B, C objects can only be transported by robots using gripper settings
A, B, and C, respectively (table 6.1). The object type distribution (the number
of each object type) depends upon the experiment (section 6.3). In a given
environment, there are enough atomic objects to construct p complex objects
(section 6.1.2). The number of objects of each type required to construct each
of the p complex objects depends upon the environment (section 6.3).

Obstacles

There are z rectangular obstacles randomly placed throughout the environment.
These obstacles block the movement of robots, as well as the Field Of View
(FOV) of sensors. At maximum sensor range, an object spans the length of
circumference of a given detection sensor (figure 6.2).



6. Collective Behavior Case Study: Gathering and Collective Construction 123

Maximum Sensor Range

Sensor Field of View

Obstacle
Object/Obstacle
Detection Sensor

Robot
Periphery

Fig. 6.2: Robot Sensors and Obstacles. An example of an obstacle blocking the FOV
of a robot’s detection sensor at maximum sensor range.

6.1.3 Complex Object Construction

The goal of the team is to maximize the number of objects delivered in the cor-
rect order to the construction zone, and hence maximize the number of complex
objects constructed over the team’s lifetime. Complex objects are constructed
from a set of gathered two-dimensional square atomic objects. The number of
complex objects that a team is to construct, the number of each atomic ob-
ject type, and the correct sequence of object types that comprise each complex
object, depend upon the environment that is being tested (section 6.3).

Complex Objects for Guiding Collective Construction

Inspired by related work in multi-robot systems [181], the atomic objects (build-
ing blocks) are able to process environmental information, and communicate
with the robots in the team over the course of the collective construction pro-
cess. When at least two objects (a complex object consists of at least three
blocks) have been delivered to the construction zone, then this is a semi-formed
complex object. This semi-formed object then broadcast signals that direct the
collective construction process according to the following procedure.

• The first stage of complex object construction is complete when at least
two objects have been delivered to the construction zone.

• After the first stage of construction, the semi-formed complex object
broadcasts an object demand signal indicating the next object type re-
quired for the next stage of construction. This signal is interpreted by
each robot as a degree of demand for each object type.



6. Collective Behavior Case Study: Gathering and Collective Construction 124

• The demand for each object type is a function of the position of the
object type in the construction sequence (when it will be required) and
the scarcity of the object type in the environment. For example, if the
next required object type is the scarcest then it will be perceived by each
robot’s object demand sensors as the type with the highest demand.

• When a complex object is complete then it will stop broadcasting object
demand signals. The object demand sensors of each robot will then receive
a zero demand for each object type.

• If there are no more complex objects to construct, the final complex object
will broadcasts a stop signal indicating task completion. Otherwise, the
team will continue searching for objects.

To illustrate this process, figure 6.3 presents an example of a semi-formed
complex object within the construction zone at simulation time t. Also illus-
trated are the sequence of object types, the number of each type required in
order to complete complex object construction, and the object demand signal
broadcast from the complex object at time t. Multiple complex objects can be
constructed simultaneously, however this renders the task more complex, since
each robot will receive signals conveying different degrees of demand for different
types to be used in the construction of separate complex objects.

Task Requirements for Collective Behavior

Atomic objects are detectable by individual robots, however, detected objects
must be cooperatively transported and used in the construction process by at
least two robots. Cooperative delivery of an object to the construction zone
constitutes one step in the collective construction process. Table 6.1 presents
the detection sensor setting required in order for robots to detect objects of
each type, and the number of robots required for cooperative transportation,
and subsequently deliver of objects to the construction zone. If a transported
object is not the next required type in the sequence required for complex object
construction, then the robots transporting the object will adopt a heuristic
behavior (section 6.2.8). This directs them to wait for a given time period,
before dropping the object in the home area. The robots will then continue
to search for other objects. If a transported object is the next required type,
then the transporting robots must be using the same gripper setting in order to
deliver the object to the construction zone (table 6.1).

6.2 Robots

6.2.1 Object/Obstacle Detection Sensors

Each robot is equipped with eight object/obstablce detection sensors ([S-0, S-7]
in figure 6.4), where each sensor covers one quadrant in the sensory FOV. These
detection sensors fulfill two functions.



6. Collective Behavior Case Study: Gathering and Collective Construction 125

S-24

S-25S-26

GACC Robots
(S-26: ObjectC
Demand Sensor)

Home Area

Construction Zone

B      A A

B

Semi-Formed
Complex Object

Complex Object Sequence: [ B AA BC AAA B ]

S-24

S-25

S-26

ObjectC Demand
Signal

O
bjectC Dem

and

SignalC

A

A

B

A

Fig. 6.3: Semi-Formed Complex Object. An example of a part of the environment
and a semi-formed complex object being constructed from a set of type A,
B, and C objects. A type C object is the next required in the sequence and
the least plentiful. Hence, the semi-formed complex object is broadcasting a
demand for a type C object. This object demand signal is received by each
robot, which in turn influences their search behavior.



6. Collective Behavior Case Study: Gathering and Collective Construction 126

Tab. 6.2: Object/Obstacle Detection Sensors. At each simulation iteration a robot can
activate it’s detection sensors with one of three settings.

Detector
Sensor
Setting

Object
Type
Detected

Obstacles
Detected

Accuracy Range Cost

Setting A A Yes 1.0 0.010 0.25

Setting B B Yes 1.0 0.025 0.25

Setting C C Yes 1.0 0.050 0.25

1. Object Detection: An Object is a building block used in the construction
of a complex object. Objects are classified as either type A, B, or C.

2. Obstacle Detection: Obstacles are represented as either static blocks or
as the boundary of the environment. Obstacles are barriers for detection
sensors (figure 6.2). Detection sensors have no FOV beyond the edges of
the environment, and beyond obstacles.

Detection sensors need to be explicitly activated, where all eight sensors are
activated with one of three settings. These settings are: A, B, and C. In table
6.2, accuracy is the degree of probability with which objects/obstacles within
the eight sensor quadrants (a 360 degree FOV) are detected. Range is a portion
of the environment’s width. Each environment’s length and width are equal in
these experiments. Cost is the energy consumed each time the detection sensors
are activated. Sensor activation uses one simulation iteration.

Detection sensor q returns the closest object type, or obstacle, in quadrant
q, divided by the squared distance to the robot (equation 6.2).

S1(q,t) = j ∈ Jq
1

δ(Lv,t, Lj,t)
(6.2)

Where q is a sensor quadrant,

v is a robot,

t is simulation time step t,

Jq is the set of all objects and obstacles in quadrant q,

Lj (jϵJq) is the location of object/obstacle j,

Lv is the location of robot v,

j is a type [A, B, C] object or obstacle, where j ϵ Jq.



6. Collective Behavior Case Study: Gathering and Collective Construction 127

GACC
Robot

SI-0/
SI-8 / S-16

SI-2/
SI-10 /
SI-18

SI-3/
SI-11 /SI-19

SI-4/SI-12
/SI-20

SI-5/
SI-13/
SI-21

SI-6/
SI-14 /
SI-22

SI-7/SI-15 /
SI-23

Sensor
Quadrant

S-a : Object and Obstacle
         Detection Sensor
S-b : Robot Detection Sensor
S-c : Home Area Detection Sensor

SI-1/
SI-9 /
S-17

GACC Robot: Sensory Field of View

S-24

S-25 S-26

Object A Demand
Sensor

Object B
Demand
Sensor

ObjectC
Demand
Sensor

GACC Robot

Fig. 6.4: Robot Sensory Field of View (FOV). Sensor space consists of eight quadrants.
There is one object/obstacle detection sensor and one robot detection sensor
per sensor quadrant ([S-0, S-7] and [S-8, S-15], respectively). Also, there are
three object demand sensors ([S-24, S-26]) positioned on the robot’s periph-
ery. These sensors have no FOV. Rather, each object demand sensor receives
a signal broadcast from complex objects being constructed.



6. Collective Behavior Case Study: Gathering and Collective Construction 128

6.2.2 Detection of Other Robots

Each robot is equipped with eight sensors ([S-8, S-15] in figure 6.4), for detecting
other robots. These sensors fulfill two functions.

1. First, to prevent collisions between robots.

2. Second, to provide each robot with an indication of the current state of
other robots within its sensory FOV. State refers whether a detected robot
is carrying an object and the object type being carried.

The eight robot detection sensors are constantly active, and have a fixed
accuracy, range and cost (table 6.4). Detection sensor q returns a value corre-
sponding to the object type being carried by the closest robot, divided by the
squared distance to this robot (equation 6.3).

S2(q,v,t) =
dv′

δ(Lv′ , Lv,t)
(6.3)

Where q is a sensor quadrant,

v is this robot, that is, the robot that is detecting other robots,

t is simulation time step t,

v’ is the closest robot to this robot in quadrant q,

dv’ is what is being carried by robot v’. Note that: dv’ yields a value equal
to either: [0, 1, 2, 3], which corresponds to robot v’ carrying either: no
object, a type A, a type B, or a type C object, respectively,

Lv′ is the location of the closest robot in sensor quadrant q,

Lv is the location of this robot.

6.2.3 Object Demand Sensors

Each robot is equipped with three sensors ([S-24, S-26] in figure 6.4) that indi-
cate the current demand for each object type. During the construction process,
each complex object broadcasts a signal that is received by each robot’s ob-
ject demand sensors. Equations 6.4, 6.5, and 6.6 present the functions used to
calculate a demand value for object types A, B, and C respectively.

SA(q,v,t) = Dj′,dAj′ ,t ∈ NA (6.4)

SB(q,v,t) = Dj′,dBj′ ,t ∈ NB (6.5)

SC(q,v,t) = Dj′,dCj′ ,t ∈ NC (6.6)



6. Collective Behavior Case Study: Gathering and Collective Construction 129

Where j’ is the complex object that is to be constructed, j’ ∈ J’,

J’ is the total number of complex objects,

dAj′ is the current priority of object type A,

dBj′ is the current priority of object type B,

dCj′ is the current priority of object type C,

NA is the set of type A objects that have not yet been delivered,

NB is the set of type B objects that have not yet been delivered,

NC is the set of type C objects that have not yet been delivered,

v is this robot,

t is simulation time step t.

Dj′,dAj′ ,t, Dj′,dBj′ ,t, and Dj′,dCj′ ,t are functions that return received object
demand sensor values for object types A, B, and C, respectively. Robot v is
directed to gather the object type with the highest demand. That is, the object
demand sensor yielding the highest value.

If J’ ≥ 2, then there are at least two complex objects concurrently being
constructed. If different object types have the highest priority as the next
required object type for at least two of the complex objects, then each of these
object types is assigned the same priority.

For example, consider that: J’ = 2. There are a total of four objects required
to construct both complex objects 1 and 2. Both complex objects 1 and 2
currently consist of two building blocks. Object type A is the next type required
in the construction of complex object 1, and object type B is the final type
required for complex object 1. Object type B is the next type required to
construct complex object 2. Object type C is the final type required to construct
complex object 2. It is assumed that t = x, where x ≤ T, and T is the total
number of simulation iterations.

• Dj′=1,dAj′=1,t=x returns a value of 3, given that two objects have already
been used in construction. The next required object type for complex
object 1 construction is a type A.

• Dj′=1,dBj′=1,t=x returns a value of 4, since two objects have already been
used in construction, and a type B object is the final building block for
complex object 1 construction.

• Dj′=1,dCj′=1,t=x returns a value of 0, since a type C object is not required
for complex object 1 construction.

• Dj′=2,dAj′=2,t=x returns a value of 0, since a type A object is not required
for complex object 2 construction.



6. Collective Behavior Case Study: Gathering and Collective Construction 130

• Dj′=2,dBj′=2,t=x returns a value of 3, since two objects have already been
used to construct complex object 2, and a type B object is the next object
for complex object 2 construction.

• Dj′=1,dCj′=2,t=x returns a value of 4, since two objects have already been
used in construction of complex objects 1 and 2, and a type C object is
the final object for complex object 2 construction.

6.2.4 Home Area Detection

Each robot uses eight home area detection sensors ([S-16, S-23] in figure 6.4).
Each sensor covers one quadrant in its 360 degree sensory FOV. Home area
sensors are constantly active, and have a fixed accuracy, range and cost (table
6.4). Detection sensor q returns a value inversely proportional to the distance
to the home area, divided by the squared distance to this robot (equation 6.7).

S3(q,v,t) = h′ 1

δ(Lh′ , Lv,t)
(6.7)

Where, h’ denotes if the home area is within range of sensor q of v (this
robot). h’ yields a value equal to either: [0, 1], which corresponds to v not
detecting, or detecting the home area, respectively. Lh is the location of the
home area, and Li,t is the location of v at time t.

6.2.5 Movement Actuators

Each robot uses two wheel motors that control its heading at a constant speed.
The distance a robot can move per simulation iteration, and the cost of move-
ment is presented in table 6.4. A robot’s heading is determined by normalizing
and scaling the vectors dx and dy generated by motor outputs MO-4 and MO-5
(figure 6.6). That is, dx = dmax(o1 - 0.5), and dy = dmax(o2 - 0.5), where, dmax

is the maximum distance a robot can traverse in one simulation iteration, and
o1 and o2 are values of motor outputs MO-4 and MO-5, respectively.

6.2.6 Object Gripper

Each robot is equipped with a gripper turret (figure 6.5), for gripping and
transporting detected objects. The gripper has three actuator settings: A, B,
and C (table 6.1), allowing a robot to grip and transport type A, B, and C
objects, respectively. The gripper needs to be explicitly activated. This uses
one simulation iteration. The minimum distance between a robot and an object
that is to be to gripped, and the cost of gripping is presented in table 6.1. When
a robot is within the home area, and is gripping an object, predefined heuristic
behaviors are activated (section 6.2.8), taking preference over ANN behaviors.



6. Collective Behavior Case Study: Gathering and Collective Construction 131

MO-4

GACC Robot Actuator Configuration

MO-5

MO-BMO-A

Gripper
Turret

Gripper
Motors

Wheel
Motors

Robot
Periphery

Fig. 6.5: Robot Gripper. Has three settings for gripping three object types. Setting
1: Minimum grip for gripping type A. Setting 2: Medium grip for gripping
type B. Setting 3: Maximum grip for gripping type C. Settings are produced
by controller motor outputs MO-5, MO-6, and MO-7 (section 6.2.7). One of
these outputs is then fed to gripper motors MO-A and MO-B.



6. Collective Behavior Case Study: Gathering and Collective Construction 132

6.2.7 Artificial Neural Network Controller

Each robot uses a recurrent ANN controller [44], where 36 sensory input neurons
are fully connected to 10 hidden layer neurons (figure 6.6). Sensory input neu-
rons [SI-0, SI-7] accept input from each of the eight object/obstacle detection
sensors. Inputs [SI-8, SI-15] accept input from each of the eight robot detection
sensors. Inputs [SI-16, SI-22] accept input from each of the home area sensors.
Inputs [SI-23, SI-25] accept input from each of the object demand sensors. In-
puts [SI-26, SI-33] accept input from the previous activation state of each of the
hidden layer neurons. The eight motor output neurons [MO-0, MO-7] are fully
connected to the hidden layer neurons. The neurons comprising the hidden and
output layers are sigmoidal units [70]. Also, within each of the hidden and out-
put neurons, a scalar bias is included. A value of one is added to each neuron’s
weight product [93]. The inclusion of the bias in the calculation of each hidden
and motor output neuron’s weight product was found to be advantageous in the
GACC collective behavior case study.

Action Selection

At each iteration, one of seven actions is executed by a robot, where the motor
output with the highest value is the action executed.

1. MO-0: Activate all object/obstacle detection sensors with setting A.

2. MO-1: Activate all object/obstacle detection sensors with setting B.

3. MO-2: Activate all object/obstacle detection sensors with setting C.

4. MO-3, MO-4: If either MO-3 or MO-4 contains the highest value, then
the robot moves in a direction calculated from dx and dy.

5. MO-5: Activate gripper with setting A.

6. MO-6: Activate gripper with setting B.

7. MO-7: Activate gripper with setting C.

6.2.8 Heuristic Behavior

In certain situations a robot will execute a predefined heuristic behavior. These
situations and the corresponding behaviors are enumerated in the following de-
scription. In all other situations a robot’s ANN controller produces its behavior.

Situation 1. If this robot is in the home area and is not gripping an object,
and another robot gripping an object is detected in the home area then execute
the following.

• Move towards the detected robot and grip the object that is being gripped.



6. Collective Behavior Case Study: Gathering and Collective Construction 133

Fig. 6.6: Robot Controller. Recurrent ANN controller. Note that for the purposes of
clarity, not all sensory input neurons are illustrated.

• If multiple robots are detected within the home area, each gripping an
object, then move towards the closest robot with an object.

• If two or more robots are gripping the same object and not moving the
object, and these are the closest robots, then grip this object also.

• If another robot first reaches the closest stationary robot (gripping an
object), then move towards the next closest stationary robot.

• If there are no stationary robots (gripping objects) within the home area,
then leave the home area and continue searching for objects.

Situation 2. If a robot is in the home area, and is gripping an object, then
execute the following.

• Wait for a given time period (wait with cargo in section 6.4) for another
robot’s help (situation 1).

• If the wait with cargo time period is exceeded then drop the object, and
continue searching for other objects.

Situation 3. If this robot is not gripping an object, and an object is detected
in the home area, then execute the following.

• Move to, and grip the object.



6. Collective Behavior Case Study: Gathering and Collective Construction 134

Tab. 6.3: Heuristic Controllers: Probabilistic preferences control action selection.
Each controller has either a specialized (OA: Object-A, OB: Object-B, OC:
Object-C detector, gatherer, or constructor) or non-specialized behavior.

Controller Type O-A
Detect

O-B
Detect

O-C
Detect

O-A
Grip

O-B
Grip

O-C
Grip

Move

O-A Detector 0.7 0 0 0 0 0 0.3

O-B Detector 0 0.7 0 0 0 0 0.3

O-C Detector 0 0 0.7 0 0 0 0.3

O-A Gatherer 0 0 0 0.7 0 0 0.3

O-B Gatherer 0 0 0 0 0.7 0 0.3

O-C Gatherer 0 0 0 0 0 0.7 0.3

O-A Constructor 0 0 0 0.7 0 0 0.3

O-B Constructor 0 0 0 0 0.7 0 0.3

O-C Constructor 0 0 0 0 0 0.7 0.3

Non-Specialized 100/7 100/7 100/7 100/7 100/7 100/7 100/7

Situation 4. If at least two robots are gripping an object that cannot be
delivered because it is out-of-order, then execute the following.

• The robots drop the object, and continue searching for other objects.

Probabilistic Heuristic Controller

For the purposes of controller comparisons and an experimental analysis, robots
also use non-adaptive heuristic controllers. Heuristic controllers are used for the
experiments described in section 6.3. Heuristic controlled teams are not mod-
ified by any adaptive process, but rather the local interactions between robots
produce a collective behavior. Seven different heuristic controller types are
tested, where each type implements a preset specialized or non-specialized be-
havior (table 6.3). Each controller is defined by probabilistic preferences for
selection of one of seven actions at each simulation iteration. These actions
are the same as those used by the ANN controller. The probabilistic prefer-
ences for action selection were derived from a set of exploratory experiments.
The preference values for object A, B, and C detectors and gatherers were
selected since they produced a specialized behavior. That is, these heuristic
controllers are specialized since they switch between executing different actions
with a low frequency. Similarly, the action selection preference values selected
for non-specialized heuristic controllers cause these controllers to switch between
executing different actions with a high frequency (section 3.2.1). The preference
values assigned to the object A, B, and C constructors are the same as those
for the gatherers. However, constructors include an additional heuristic which
causes constructors to remain within the home area.



6. Collective Behavior Case Study: Gathering and Collective Construction 135

6.3 Experimental Design

Experiments test 30 robots with n objects, z obstacles, and a home area in a
bounded environment. Experiments measure the impact of a collective behavior
design method and environment upon the number of complex objects constructed
by the team. The experimental objective is to ascertain which collective behav-
ior design method maximizes team task performance, and to investigate the
contribution of emergent behavioral specialization to task performance.

• Collective Behavior Design Methods: Each robot controller is adapted
with either one of the NE methods.

• Simulation Environment : Given a collective behavior design method, sim-
ple and complex environment sets are tested.

6.3.1 Team Fitness Evaluation

A global fitness function (G) is a function of the total number of objects deliv-
ered in the correct sequence to the construction zone and the number of complex
objects constructed by the team. The goal of a team is to maximize G. However,
robots do not maximize G directly, instead each robot (η) attempts to maxi-
mize its own private fitness function gη. Also, G does not guide evolution, but
rather provides a measure of team performance, based upon the contributions
of individual robots. It is gη that guides the evolution of each robot’s controller.

Private Fitness Function

Equation 6.8 presents gη which calculates the number of objects delivered in the
correct sequence by η over the course of its lifetime. When an object is delivered
to the construction zone each robot receives the same fitness reward.

gv =
∑

0≤t≤T

∑
j∈J

ovj,t (6.8)

Where, v is a robot,

ovj,t is the number of objects j delivered in the correct sequence at time t,

J is the set of all objects within the environment.

Global Fitness Function

G calculates the sum of objects delivered in the correct sequence by the team.
For any given experiment, an average number of objects delivered in the correct
sequence is calculated over all epochs of all robot lifetime’s. The highest number
of atomic objects delivered in the correct sequence is then selected from each of
the robot lifetime’s in order to calculate G (equation 6.9).



6. Collective Behavior Case Study: Gathering and Collective Construction 136

G =
∑
v∈V

gv (6.9)

Where V is the set of all robots.

6.3.2 Simulation and Neuro-Evolution Parameters

Tables 6.4 and 6.5 present the simulation and NE parameter settings, respec-
tively. NE parameter settings are those used by the HomCNE, HetCNE, CCGA,
Multi-Agent ESP, and CONE methods. Simulation settings are those used by
the simulator. Any given experiment consists of 250 generations. Each genera-
tion corresponds to the lifetime of each robot in the team. Each robot lifetime
lasts for 10 epochs, where each epoch consists of 3000 simulation iterations.
Each epoch represents a task scenario that tests different robot starting posi-
tions, and object locations in the environment. A team’s task performance is
calculated over 20 experimental runs. Parameter values presented in tables 6.4
and 6.5 were derived in a set of exploratory experiments, which indicated that
minor changes to these values produced similar results. Changing parameters
values to within 0.20 of the values given in tables 6.4 and 6.5 resulted in the
evolution of teams that yielded a team task performance within 0.09 of the task
performance results presented in section 6.3.

6.3.3 Evolution of Collective Behavior

HomCNE, HetCNE, CCGA, Multi-Agent ESP and CONE are applied in order
to evolve team behavior.

Evolving GACC Behavior with Homogenous CNE

For a team of 30 robots, the population is initialized with 6000 randomly gener-
ated genotypes. Each genotype represents the hidden layer connection weights
of one controller. Each genotype is encoded as vector of 420 floating point val-
ues (36 sensory inputs plus eight motor outputs multiplied by ten hidden layer
neurons). A controller is derived via randomly selecting one genotype from the
elite portion (table 6.5) of the population. This selected genotype is replicated
30 times in order to create a team of 30 clones.

Evolving GACC Behavior with Heterogenous CNE

For a team of 30 robots, the population is initialized with 6000 randomly gener-
ated genotypes. Each genotype represents the hidden layer connection weights
of one controller. Each genotype is encoded as vector of 420 floating point val-
ues (36 sensory inputs plus eight motor outputs multiplied by ten hidden layer
neurons). A controller is derived via randomly selecting 30 genotypes from the
elite portion of the population, such that no genotype is selected more than
once. The selected genotypes are decoded into controllers in order to create a
team of 30 robots.



6. Collective Behavior Case Study: Gathering and Collective Construction 137

Tab. 6.4: Gathering and Collective Construction (GACC) Simulation Parameters. Pa-
rameters used in each GACC simulation.

GACC Simulation Parameters

Complex Object Communication Range 1.0

Complex Object Communication Type Broadcast

Wait with cargo time 30

Robot Movement Range 0.001

Robot Movement Cost 0.01

Object Detection Sensor Range 0.05

Object Detection Sensor Cost Variable (section 6.2.1)

Robot Detection Sensor Range 0.05

Robot Detection Sensor Cost 0.01

Robot Detection Sensor Accuracy 1.0

Robot Initial Energy 1000 units

Initial Robot Positions Random (Excluding home area)

Home Area Position Environment’s Center

Environment Width 1.0

Environment Height 1.0

Complex Objects to be Constructed Variable (section 6.3)

Total Objects in Environment Variable (section 6.3)

Total Type A Objects in Environment Variable (section 6.3)

Total Type B Objects in Environment Variable (section 6.3)

Total Type C Objects in Environment Variable (section 6.3)

Object Distribution (Initial Positions) Random

Robot Lifetime 3000 Iterations



6. Collective Behavior Case Study: Gathering and Collective Construction 138

Tab. 6.5: Neuro-Evolution (NE) Parameter Settings. Used by the HomCNE, HetCNE,
CCGA, Multi-Agent ESP, and CONE methods.

Neuro-Evolution Parameter Settings

Generations 250

Epochs 10

Simulation iterations per epoch (Robot
lifetime)

3000

Mutation (per gene) probability 0.05

Mutation type Burst (Cauchy distribution)

Mutation range [-1.0, +1.0]

Fitness stagnation Y 15 Generations (CONE/Multi-Agent ESP)

Fitness stagnation V 15 Generations (CONE)

Fitness stagnation W 10 Generations (CONE)

Genotype Distance (GD) [0.0, 1.0] (CONE)

Specialization Distance (SD) [0.0, 1.0] (CONE)

Population elite portion 50%

Weight (gene) range [-10.0, +10.0]

Crossover Single point

Sensory input neurons 36

Hidden layer neurons (Initial number) 10

Motor output neurons 8

Genotype Input-output weights: One neuron (Multi-
Agent ESP, CONE), All weights: One ANN
controller (HomCNE, HetCNE, CCGA)

Total genotypes 15000

Genotype representation Floating point value vector

Genotype populations 30 (CONE, Multi-Agent ESP, CCGA), 1
(HomCNE, HetCNE)

Genotype length 42 (CONE, Multi-Agent ESP), 420 (HomCNE,
HetCNE, CCGA)

Genotypes per population 500 (CONE, Multi-Agent ESP, CCGA), 15000
(HomCNE, HetCNE)



6. Collective Behavior Case Study: Gathering and Collective Construction 139

Evolving GACC Behavior with CCGA

For a team of 30 robots, 30 genotype populations are created. Each population
is initialized with 200 randomly generated genotypes. Each genotype is encoded
as vector of 420 floating point values (34 sensory inputs plus eight motor outputs
multiplied by ten hidden layer neurons). A controller is derived via randomly
selecting one genotype from the elite portion of a given population. This process
is then repeated 30 times, in order to derive 30 different controllers.

Evolving GACC Behavior with Multi-Agent ESP / CONE

For a team of 30 robots, both Multi-Agent ESP and CONE create 30 genotype
populations for deriving 30 different controllers. Population i consists of u sub-
populations, where u is the number of hidden layer neurons. Each population
is initialized with 200 genotypes. Each genotype is encoded as vector of 42
floating point values(34 sensory inputs plus eight motor outputs). A controller
is derived via randomly selecting one genotype from the elite portion of each
sub-population for a given population. Selected genotypes then form the hidden
layer of a controller. This process is repeated 30 times to derive 30 controllers.

Specific to CONE, the number of generations (V in section 3.7) which fitness
progress can stagnate within one or more populations (n controllers) before the
GD value is adapted (section 3.1.2) is presented as fitness stagnation V in table
6.5. The number of generations (W in section 3.7) which fitness can stagnate in
any given population before the number of sub-populations is adapted (section
3.6), is presented as fitness stagnation W in table 6.5.

6.4 Task Results

This section describes results yielded from two experiment sets. Atomic objects
are distributed throughout the environment and are the building blocks for
complex objects. Complex objects are large objects that are constructed from
a set of atomic objects. Objects must be delivered to a home area in a specific
sequence in order for a complex object to be constructed.

1. Experiment Set 1: Demonstrates that not all environments are appropriate
for deriving specialization during controller evolution.

2. Experiment Set 2: Establishes that certain environments are appropriate
for deriving behavioral specialization over the course of controller evolu-
tion (section 6.4.2). Furthermore, this experiment set uses shaping [132]
techniques together with a set of incrementally complex environments in
order to derive incrementally complex team behaviors.

This experiment set demonstrates that CONE consistently derives a set
of castes [83] where the interaction of these castes produces a higher team
task performance, comparative to that of HomCNE, HetCNE, CCGA, and
Multi-Agent ESP evolved teams.



6. Collective Behavior Case Study: Gathering and Collective Construction 140

Tab. 6.6: Simple Environments: 10 objects are required in order to construct one com-
plex object. Object -A/-B/-C Number: Number of type x objects. Complex
Objects: Number of complex objects. ENV: Environment number.

ENV Object-A
Number

Object-B
Number

Object-C
Number

Complex
Objects

1 10 0 0 1

2 0 10 0 1

3 0 0 10 1

4 20 0 0 2

5 0 20 0 2

6 0 0 30 3

7 30 0 0 3

8 0 40 0 4

9 0 0 40 4

One experiment consists of placing a team in a given environment and ap-
plying a given NE method to evolve controllers. Each experiment consists of
two distinct phases: an evolution phase and a testing phase.

• Evolution phase: The controllers of a team are evolved for 250 generations
(table 6.5) using a given NE method and a given environment.

• Testing phase: The fittest n controllers (the fittest team) are selected and
executed in the same environment for one lifetime. The testing phase does
not evolve controllers, so the evolved connection weights of each controller
remains static. Task performances are averages calculated over 20 runs of
the fittest controllers in a test environment.

In order to compare task performances yielded by two teams a statistical
comparison is conducted between two given sets of task performance data. The
following procedure is used.

• The Kolmogorov-Smirnov test [48] is applied to each of the data sets in
order to check if the data sets conform to normal distributions.

• To determine if there is a statistically significant difference between task
performance results of any two teams evolved by given methods, an inde-
pendent t-test [48] is applied. The threshold for statistical significance is
0.05, and the null hypothesis is that data sets do not significantly differ.

Results of all statistical comparisons conducted in this chapter are presented
in appendix D.



6. Collective Behavior Case Study: Gathering and Collective Construction 141

Fig. 6.7: Average Number of Objects Delivered in the Correct Order in each Simple
Environment. By teams evolved by each method.

6.4.1 Experiment Set 1: Evolving Teams in Simple Environments

These experiments test the evolution of team behavior in environments that
were found not to encourage emergent behavioral specialization during con-
troller evolution. This environment set is the simple environment set. Each
environment contains a different distribution of one object type (either A, B, or
C ). The object type distribution within each simple environment is presented in
table 6.6. The simple environments were derived according to the supposition
that if an environment consists of only one object type, then there will be no
need for controllers to specialize to different behaviors in order to accomplish
the task. Results yielded from team evolution in experiment set 1 elucidate that
environments containing only one object type are not appropriate for encourag-
ing emergent specialization. Figure 6.7 presents, for each simple environment,
the average number of objects delivered in the correct order to the construction
zone by teams evolved by each NE method. Appendix D presents, for each sim-
ple environment, the behavioral composition of the fittest HomCNE, HetCNE,
CCGA, Multi-Agent ESP and CONE evolved teams.

6.4.2 Experiment Set 2: Shaping of Teams in Complex Environments

This section presents the results of applying HomCNE, HetCNE, CCGA, Multi-
Agent ESP and CONE in a set of shaping experiments. These shaping exper-
iments use environments that were found to encourage emergent specialized
behavior during controller evolution. These environments are called complex



6. Collective Behavior Case Study: Gathering and Collective Construction 142

Tab. 6.7: Complex Environments: A complex object is built from a combination of 10
object types. Object -A/-B/-C Number: Number of type x objects. Complex
Objects: Number of complex objects. ENV: Environment.

ENV Object-A
Number

Object-B
Number

Object-C
Number

Complex
Objects

1 1 2 7 1

2 2 4 4 1

3 3 6 1 1

4 8 2 10 2

5 10 4 6 2

6 10 16 4 3

7 10 12 8 3

8 16 14 10 4

9 15 20 5 4

environments. Each experiment evolves increasingly complex team behaviors
in response to increasingly complex tasks. Shaping was selected as a technique
to evolve complex team behaviors, since using direct evolution to solve com-
plex GACC tasks was unsuccessful. Each shaping environment contains a given
combination of type A, B, and C objects, and includes incrementally complex
requirements for task accomplishment. Team behavior evolved for each task
in each environment is then used as the starting point for the evolution of be-
havior in the next task and the next environment. The object type distribution
within each shaping environment is presented in table 6.7. This distribution was
derived according to the supposition that if an environment contains multiple
object types, then there will be a requirement for controllers to specialize to
different behaviors in order to accomplish the task with optimal performance.

Shaping of Team Behavior in Complex Environments

The following describes the decomposition of the GACC task, into eight diffi-
culty levels, and the requirements for task completion at each difficulty level.
In order for a complex object to be constructed, objects must be delivered to
the construction zone either in any sequence of object types, or in predefined
sequence of object types. Complex objects that require the delivery of objects
in a predefined sequence of types are called ordered complex objects. Complex
objects that can be constructed from objects delivered to the construction zone
in any sequence of types are called disordered complex objects. For environments
where more than one complex object is to be constructed, objects can be de-
livered such complex objects are concurrently constructed. For environments
containing obstacles, these obstacles are placed in random locations. The task of
the team in each shaping environment (Env) is to gather all objects for complex
object construction.



6. Collective Behavior Case Study: Gathering and Collective Construction 143

Tab. 6.8: Complex Object Sequence in Shaping Environments: Up to four complex ob-
jects are to be constructed. Complex Object-x Build Sequence: The sequence
in which type A, B, and C object types must be delivered. ENV: Shaping
environment number. NA: Not Applicable.

ENV Complex
Object-1 Build
Sequence

Complex
Object-2 Build
Sequence

Complex
Object-3 Build
Sequence

Complex
Object-4 Build
Sequence

1 CCACBCBCCC NA NA NA

2 CAACBBBCBC NA NA NA

3 BABAABCBBB NA NA NA

4 BAABAACAAC ACCCCCCCCA NA NA

5 BAABAABAAB CACACACACC NA NA

6 BAAAAAAAAB CABBBBBBAC CBBBBBBBBC NA

7 CACACBCBCB CABABABABB BABABABACC NA

8 BABACABACB CACACABABC BABABABACB CABACABABC

9 BABACABABB CACACABABB BABABABACB BABABBBABB

Env 1. One disordered complex object, no obstacles and 10 objects.

Env 2. One disordered complex object, 10 obstacles and 10 objects.

Env 3. One ordered complex object, 10 obstacles and 10 objects.

Env 4. One ordered complex object, one disordered complex object, 10 obstacles
and 20 objects.

Env 5. Two ordered complex objects, 10 obstacles and 20 objects.

Env 6. Two ordered complex objects, one disordered complex object, 10 obstacles
and 30 objects.

Env 7. Three ordered complex objects, 10 obstacles and 30 objects.

Env 8. Three ordered complex objects, one disordered complex object, 10 obsta-
cles and 40 objects.

Env 9. Four ordered complex objects, 10 obstacles and 40 objects.

Table 6.8 presents, for each environment, the sequence of atomic object
types that complex objects must be constructed from. Figure 6.8 presents,
for each complex environment, the average number of atomic objects delivered
in the correct order, by HomCNE, HetCNE, CCGA, Multi-Agent ESP and
CONE evolved teams. Appendix D presents the behavioral composition of the
fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP and CONE evolved teams.
Behavioral composition refers to the composite number of robots in a team that
are non-specialized or specialized to activating detection sensors or the gripper
with a specific setting.



6. Collective Behavior Case Study: Gathering and Collective Construction 144

Fig. 6.8: Average Number of Objects Delivered in the Correct Order in each Complex
Environment. By teams evolved by each method.

6.4.3 Comparing Task Performances of Teams Evolved in Simple versus
Complex Environments

A statistical comparison of results is conducted for teams evolved in simple
and complex environments. Figures 6.7 and 6.8 present the average number
of objects delivered in correct order by teams evolved by each method, in the
simple and complex environments, respectively. The methods used to evolve
teams are HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE. Appendix
D presents the results of this statistical comparison.

Results Summary: Teams Evolved in Simple and Complex Environments

Task performances yielded by teams evolved in simple and complex environ-
ments, indicate the following results. Average task performance refers to the
average number of objects delivered in correct order. Optimal task performance
is the maximum number of objects that can be delivered in the correct order.

1. For complex environments, results presented in figure 6.8, and the support-
ing statistical comparison presented in appendix D indicates the average
task performance of CONE evolved teams is significantly higher than that
of teams evolved by related methods.

2. For all complex environments, a comparison of behavioral compositions
of the fittest teams evolved by CCGA, Multi-Agent ESP and CONE (ap-
pendix D), indicates that complex environments are appropriate for en-



6. Collective Behavior Case Study: Gathering and Collective Construction 145

couraging the evolution of teams consisting of multiple complementary
castes.

3. In each complex environment, the fittest CONE evolved team consists of
one non-specialized and multiple specialized castes (appendix D). This
result supports the hypothesis that CONE is appropriate for deriving spe-
cialization such that teams achieve a higher task performance, comparative
to that achieved by related methods.

4. For all complex environments, behavioral compositions and task perfor-
mances of the fittest HomCNE and HetCNE evolved teams indicates that
HomCNE and HetCNE are inappropriate for evolving behaviorally het-
erogenous teams (appendix D).

5. Average task performance yielded by CONE, Multi-Agent ESP, and CCGA
evolved teams in the complex environments is significantly higher than
that yielded by CONE, Multi-Agent ESP, and CCGA evolved teams in
the simple environments (appendix D).

6. For all complex environments the fittest CCGA, Multi-Agent ESP and
CONE evolved teams achieved an average of 0.71%, 0.79%, and 0.93% of
optimal task performance (appendix D), respectively.

7. For all simple environments the fittest CCGA, Multi-Agent ESP and
CONE evolved teams achieved 0.51%, 0.54%, and 0.55% of optimal task
performance (appendix D), respectively.

8. In both the simple and complex environments, there is no significant dif-
ference between the average task performances of HomCNE and HetCNE
evolved teams.

9. In the complex environments the fittest HomCNE and HetCNE evolved
teams achieved 0.29% and 0.32% of optimal task performance (appendix
D), respectively.

10. In the simple environments the fittest HomCNE and HetCNE evolved
team achieved 0.48% and 0.47% of optimal task performance for all envi-
ronments (appendix D), respectively.

Further analysis of these results is present in section 6.5.

6.5 Discussion of Results

This section discusses the role of emergent behavioral specialization in enabling
CONE evolved teams to achieve a higher task performance comparative to re-
lated methods. Within this section, sections 6.5.1, 6.5.4 and 6.5.5 describe an
analysis that evaluates the contribution of emergent behavioral specialization to
collective behaviors derived during controller evolution. Section 6.5.6 describes
an analysis of the function and contributions of the genotype and specialization
difference metrics to emergent specialization in CONE evolved teams.



6. Collective Behavior Case Study: Gathering and Collective Construction 146

6.5.1 CCGA, Multi-Agent ESP, and CONE for Behavioral Specialization

The fittest teams evolved by CCGA, Multi-Agent ESP and CONE in the com-
plex environments, consist of multiple complementary castes. Furthermore, ac-
cording to statistical tests, the task performances of teams evolved by CCGA,
Multi-Agent ESP and CONE in the complex environments is significantly higher
comparative that of teams evolved in the simple environments. These results in-
dicate that the cooperative co-evolutionary approaches of CCGA, Multi-Agent
ESP, and CONE are better suited for attaining collective behavior solutions in
the complex environments. That is, emergent castes benefit the performance
of teams evolved in complex environments. This is exemplified by the multiple
complementary castes derived by CCGA, Multi-Agent ESP, and CONE in the
complex environments, and the corresponding task performance of the fittest
teams evolved by these methods (appendix D).

6.5.2 CNE for Behavioral Specialization

The derivation of multiple castes does not occur in the fittest HomCNE and
HetCNE evolved teams. In the case of the fittest teams evolved by HomCNE
and HetCNE in both the simple and complex environments, a single caste is de-
rived. Furthermore, there is no significant difference between the average task
performance of teams evolved by HomCNE and HetCNE in both the simple
and complex environments (appendix D). This result supports the notion that
methods using cooperative co-evolution and a multiple population architecture
(CCGA, Multi-Agent ESP and CONE) are better suited comparative to meth-
ods using a single population architecture (HomCNE and HetCNE) for evolving
high performance teams in the complex environments.

6.5.3 The Role of Castes

For all complex environments, specialized (and non-specialized) castes emerge
in the fittest CCGA, Multi-Agent ESP, and CONE evolved teams (appendix
D). This is attributed to the nature of the task and environment.

Consider that at least two robots are required in order to deliver an object to
the construction zone. However, before an object is cooperatively delivered, it
must first be detected. The detection and gathering sub-tasks can be performed
by individual robots. The detection of type A, B, or C objects requires that
a robot’s detection sensors be activated with setting A, B, or C, respectively.
Similarly, the transportation of type A, B, or C objects requires that a robot’s
gripper be activated with setting A, B, or C, respectively. Hence, in order for
a team to deliver an optimal number of objects to the construction zone, dif-
ferent robots are required to adopt specializations to either object detection
or transportation. Specialization to either object detection or transportation
results in the derivation of a set of complementary castes in a team. The inter-
actions of these castes in turn results in a high performance team. The fittest
teams evolved by CCGA, Multi-Agent ESP, and CONE, each consist of a set of
specialized and non-specialized castes (appendix D).



6. Collective Behavior Case Study: Gathering and Collective Construction 147

Tab. 6.9: Task Performance of Fittest HomCNE Evolved Teams (with Lesioned Non-
Specialized Caste) in Complex Environments: Results are percentages of
original (unlesioned) performance.

Complex Environment
Number

Performance without
Non-Specialized Robots

1 76.78 %

2 80.01 %

3 78.45 %

4 84.50 %

5 82.12 %

6 70.56 %

7 77.90 %

8 82.34 %

9 78.95 %

As in the multi-rover case study (chapter 5), non-specialized castes are theo-
rized to have emerged in response to task and environment requirements. Non-
specialized robots are suitable for complementing specialized robots, since by
definition, non-specialized robots do not dedicate a majority of their lifetime to
a single behavior. The contribution of non-specialized and specialized castes to
the task performance of the fittest CCGA, Multi-Agent ESP and CONE evolved
teams is analyzed as part of the caste lesion study (section 6.5.4).

6.5.4 Caste Lesion Study

To investigate the role of emergent behavioral specialization in evolved teams a
caste lesion study is conducted. The caste lesion study operates via removing
sets of specialized or non-specialized controllers. These removed controllers are
then replaced with heuristic controllers that implement a hard-wired specialized
or non-specialized behavior (section 6.2.8). The task performance of these le-
sioned team is then evaluated in 20 new experimental runs for each complex en-
vironment, and an average task performance is calculated. The goal of the caste
lesion study is to ascertain the contribution of specialized and non-specialized
castes to the overall task performance of the fittest teams. The procedure used
to lesion each of the fittest teams is described in appendix D. Tables 6.9, 6.10
6.11, 6.12 and 6.13 present the task performances of the fittest teams evolved
by HomCNE, HetCNE, CCGA, Multi-Agent ESP and CONE, respectively (in
complex environments), with lesioned non-specialized, and object type A, B,
and C detector, gatherer and constructor castes.

Results presented in tables 6.11, 6.12, and 6.13 indicate that task perfor-
mances of the fittest teams CCGA, Multi-Agent ESP and CONE evolved teams
depends upon the behaviors fulfilled by each of the castes as well as the interac-
tion of these castes. Furthermore, these results indicate that the fittest CONE



6. Collective Behavior Case Study: Gathering and Collective Construction 148

Tab. 6.10: Task Performance of Fittest HetCNE Evolved Teams (with Lesioned Non-
Specialized Caste) in Complex Environments: Results are percentages of
original (unlesioned) performance.

Complex Environment
Number

Performance without
Non-Specialized Robots

1 82.81 %

2 81.15 %

3 85.65 %

4 79.58 %

5 80.25 %

6 76.68 %

7 79.97 %

8 72.66 %

9 83.53 %

Tab. 6.11: Task Performance of Fittest CCGA Evolved Teams (with Lesioned Castes)
in Complex Environments: Results are percentages of original (unlesioned)
performance. O-A/O-B/O-C Detector: Robots specialized to detecting.
O-A/O-B/O-C Gatherer: Robots specialized to moving gripped objects.
O-A/O-B/O-C Constructor: Robots specialized to placing gripped objects
in the construction zone. NA: Not Applicable.

Complex Environment Number

Specialization 1 2 3 4 5 6 7 8 9

O-A Detector NA NA 75.2% 65.1% 58.6% 54.6% 56.6% 51.1% 52.2%

O-B Detector NA 45.7% 70.0% NA 79.3% 55.3% 52.6% 67.7% 65.5%

O-C Detector 54.2% 69.1% NA 63.3% 68.5% 72.4% NA 77.4% 79.9%

O-A Gatherer NA NA 55.7% 59.9% 53.9% 56.1% 55.3% 52.1% 50.1%

O-B Gatherer NA 66.2% 67.0% NA 75.8% 61.5% 60.2% 68.2% 57.8%

O-C Gatherer 41.1% 64.2% NA 60.2% 68.3% 70.9% NA 66.3% 78.1%

O-A Constructor NA NA 64.5% 62.0% 58.8% 59.1% 65.0% 68.2% 71.9%

O-B Constructor NA 66.7% 65.7% NA 78.8% 58.9% 67.3% 72.6% 69.7%

O-C Constructor 63.1% 79.8% NA 59.9% 68.9% NA NA 76.4% NA

Non-Specialized 60.2% 58.9% 56.2% 62.1% 59.6% 64.8% 65.5% 87.6% 71.6%



6. Collective Behavior Case Study: Gathering and Collective Construction 149

Tab. 6.12: Task Performance of Fittest MESP Evolved Teams (with Lesioned Castes)
in Complex Environments: Results are percentages of original (unlesioned)
performance. O-A/O-B/O-C Detector: Robots specialized to detecting.
O-A/O-B/O-C Gatherer: Robots specialized to moving gripped objects.
O-A/O-B/O-C Constructor: Robots specialized to placing gripped objects
in the construction zone. NA: Not Applicable.

Complex Environment Number

Specialization 1 2 3 4 5 6 7 8 9

O-A Detector NA NA 73.1% 70.2% 68.0% 65.5% 61.0% 58.2% 62.4%

O-B Detector NA 75.7% 58.7% NA 87.1% 62.3% 63.7% 72.4% 67.6%

O-C Detector 55.4% 64.3% NA 68.4% 65.0% 84.5% NA 84.9% 77.8%

O-A Gatherer NA NA 51.3% 66.7% 71.1% 64.3% 66.3% 61.1% 65.4%

O-B Gatherer NA 69.8% 61.9% NA 80.0% 77.9% 65.3% 64.2% 67.9%

O-C Gatherer 49.9% 58.7% NA 68.2% 69.4% 80.9% NA 80.7% 78.2%

O-A Constructor NA NA 70.1% 58.9% 57.7% 66.2% 65.3% 64.0% 61.3%

O-B Constructor NA 75.8% 73.3% NA 71.0% 67.2% 68.8% 70.7% 60.1%

O-C Constructor 65.8% 67.1% NA 55.4% 63.3% NA NA 74.5% 76.0%

Non-Specialized 52.5% 55.7% 58.6% 53.8% 62.4% 68.8% 67.9% 88.0% NA

Tab. 6.13: Task Performance of Fittest CONE Evolved Teams (with Lesioned Castes)
in Complex Environments: Results are percentages of original (unlesioned)
performance. O-A/O-B/O-C Detector: Robots specialized to detecting.
O-A/O-B/O-C Gatherer: Robots specialized to moving gripped objects.
O-A/O-B/O-C Constructor: Robots specialized to placing gripped objects
in the construction zone. NA: Not Applicable.

Complex Environment Number

Specialization 1 2 3 4 5 6 7 8 9

O-A Detector NA NA 70.3% 64.5% 60.0% 63.2% 59.6% 57.3% 51.1%

O-B Detector NA 58.2% 62.2% NA 68.1% 65.6% 60.0% 57.7% 56.8%

O-C Detector 45.3% 58.7% NA 60.3% 61.8% 70.2% NA 72.4% 65.8%

O-A Gatherer NA NA 63.8% 62.6% 66.8% 55.8% 53.3% 54.8% 55.6%

O-B Gatherer NA 60.2% 56.8% NA 71.5% 61.2% 57.5% 58.1% 56.0%

O-C Gatherer 40.2% 54.8% NA 45.6% 58.4% 69.2% NA 65.7% 57.2%

O-A Constructor NA NA 72.2% 70.1% 68.6% 65.7% 62.4% 65.0% 48.8%

O-B Constructor NA 65.8% 67.7% NA 64.8% 70.0% 63.3% 61.0% 49.6%

O-C Constructor 60.8% 64.2% NA 69.9% 65.3% NA NA 66.5% 52.7%

Non-Specialized 41.3% 48.6% 45.7% 52.2% 62.1% 61.9% 60.6% 75.7% NA



6. Collective Behavior Case Study: Gathering and Collective Construction 150

evolved teams (for all complex environments) have a greater reliance upon con-
stituent castes, comparative to the fittest CCGA and Multi-Agent ESP evolved
teams. However, the task performance of the fittest CCGA and Multi-Agent
ESP evolved teams is more robust when castes are removed and replaced with
heuristic controllers. This indicates that there is less of an inter-dependency
between constituent castes in the fittest CCGA and Multi-Agent ESP teams,
comparative to the fittest CONE evolved teams. The fittest CCGA and Multi-
Agent ESP evolved teams tend to rely less upon the interactions between dif-
ferent castes. An analysis of the inter-dependency between non-specialized and
specialized castes is presented as part of the behavioral validation study in sec-
tion 6.5.5. The smallest difference between original task performance and the
task performance of lesioned teams was measured for the fittest HomCNE and
HetCNE evolved teams (tables 6.9 and 6.10, respectively). This supports pre-
vious results indicating that teams comprised of multiple complementary spe-
cialized and non-specialized castes are required in order for the team to attain
a near optimal task performance (section 6.4.3).

6.5.5 Validating the Role of Behavioral Specialization

In order to evaluate the contribution of specialized and non-specialized behaviors
to a team’s task performance, a set of behavioral validation experiments are
executed. These behavioral validation experiments investigate the contribution
of specialized and non-specialized castes to team task performance, as well as
the inter-dependency between castes. Each behavioral validation experiment
executes a team where each robot uses a fittest specialized controller. The team
label and behavioral specialization of each controller of such teams, for each
behavioral validation experiment (Exp), is delineated in the following.

1. Exp 1: Object-A Detector, Type A object detection.

2. Exp 2: Object-B Detector, Type B object detection.

3. Exp 3: Object-C Detector, Type C object detection.

4. Exp 4: Object-A Gatherer, Type A object gathering.

5. Exp 5: Object-B Gatherer, Type B object gathering.

6. Exp 6: Object-C Gatherer, Type C object gathering.

7. Exp 7: Object-A Constructor, Type A object construction.

8. Exp 8: Object-B Constructor, Type B object construction.

9. Exp 9: Object-C Constructor, Type C object construction.

10. Exp 10: Non-Specialized, Non-specialized.



6. Collective Behavior Case Study: Gathering and Collective Construction 151

The setting of an identical behavior for each controller in a team is done
via initializing each robot with the fittest controller selected from either the
fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP or CONE evolved team
(for each complex environment). The selected controller is the fittest that ex-
hibits either a specialized detector, gatherer or constructor behavior, or a non-
specialized behavior. Such controllers are always selected from CONE evolved
teams, since CONE evolved teams yielded the highest task performance in all
complex environments (figure 6.8). For each behavioral validation experiment,
each selected controller is cloned 20 times in order to create a behaviorally
homogenous team. For clarity, teams constructed for the behavioral validation
experiments are herein referred to as cloned teams. Each clones team is executed
in each complex environment for 20 experimental runs. For each behavioral val-
idation experiment, robots and obstacles are placed in random locations, and
executed for one lifetime. These experiments do not employ any adaptive meth-
ods, so task performances achieved by cloned teams result from the interactions
of individual robots over the course of a lifetime.

Task performances achieved by cloned teams consisting of controllers spe-
cialized to detecting, gathering, and constructing behaviors are presented in
appendix D. Teams consisting entirely of robots specialized to the move behav-
ior are not tested given that the move action does not directly contribute to
the detection or transportation of objects to the construction zone. The move
behavior is represented by gatherer teams.

Results of Behavioral Validation Experiments

This section presents the results of statistical tests that compare the task perfor-
mances of cloned teams (constructed for the behavioral validation experiments)
with that of HomCNE, HetCNE, CCGA, Multi-Agent ESP and CONE evolved
teams. The results of statistical comparisons between cloned and evolved teams
are presented in table appendix D. The average task performance of all the
cloned teams is significantly lower comparative to that of evolved teams (ap-
pendix D). These results indicate that behaviorally homogenous teams are insuf-
ficient for achieving task performances comparable to that achieved by evolved
teams.

These behavioral validation experiments support previous results that indi-
cate that a near optimal task performance mandates teams comprised of mul-
tiple complementary castes (section 6.4.3). These experiments also support
previous results that indicate that the high task performance yielded by the
fittest CCGA, Multi-Agent ESP, and CONE evolved teams is a consequence
of the interaction and inter-dependency between non-specialized and special-
ized castes. This is supported by the lack of significant difference between the
task performances of the non-specialized cloned teams (section 6.5.5) and teams
evolved by HomCNE and HetCNE (section 6.4.2).



6. Collective Behavior Case Study: Gathering and Collective Construction 152

Fig. 6.9: Number of Objects Delivered in Correct Order by Teams evolved by CONE
and CONE Variants. CONE, CONE-1, CONE-2, CONE-3.

6.5.6 The Role of Difference Metrics in CONE

This section examines the role of the Genotype Difference Metric (GDM) and
Specialization Difference Metric (SDM) for facilitating behavioral specializa-
tion and increasing task performance in CONE evolved teams. As part of this
analysis, three variants of CONE are executed.

1. CONE without GDM (CONE-1): Teams are evolved using CONE without
the GDM. The SDM remains active.

2. CONE without SDM (CONE-2): Teams are evolved using CONE without
the SDM. The GDM remains active.

3. CONE without GDM and SDM (CONE-3): Teams are evolved using
CONE without both the GDM and SDM.

Figure 6.9 presents the average task performance of teams evolved using
CONE, without the GDM, SDM, and both the GDM and SDM, for all complex
environments. These results are averaged over 20 experimental runs for each
CONE variant in each environment. For comparison, figure 6.9 also presents
results previously attained by CONE evolved teams using the original experi-
mental setup. The results of a statistical comparison between CONE and its
variants are presented in appendix D. This results comparison indicates that,
for all complex environments, there is a significant difference between the task



6. Collective Behavior Case Study: Gathering and Collective Construction 153

performance of teams evolved by CONE and CONE-1, CONE-2, and CONE-
3. That is, teams evolved by CONE yield a performance advantage over the
CONE variants. This result supports the hypothesis that both the GDM and
SDM are beneficial in terms of increasing task performance in CONE evolved
teams. Without either the GDM or SDM, the CONE evolved teams lose their
advantage of a significantly higher task performance. Furthermore, the caste
lesion study (section 6.5.4) supports the hypothesis that the GDM and SDM
enables CONE to derive specializations appropriate for achieving a higher task
performance, comparative to related methods.

6.6 Conclusions

This chapter investigated the application of CONE and related methods for
evolving collective gathering and construction behaviors in a simulated robot
team. This task mandated behavioral specialization, since different object types
required that robots specialize to gathering different object types in order for a
team to maximize the number of structures built. Teams evolved with CONE
were found to yield a higher task performance comparative to related meth-
ods. An experimental analysis revealed that CONE derived a set of behavioral
specializations that were found to be necessary in order to achieve a task per-
formance that surpassed that achieved by related methods.



7. DISCUSSION AND FUTURE DIRECTIONS

This thesis presented and evaluated Collective Neuro-Evolution (CONE), which
is a method for the automated controller design in artificial collective behavior
systems. In this chapter, the contributions of CONE, and the implications of
these contributions are discussed. Future research directions are also presented
and discussed in the context of controller design methods that utilize emergent
phenomena in order to solve collective behavior tasks.

7.1 Evolving Controllers in Collective Behavior Systems

CONE is a principled method for automated controller design in collective be-
havior systems. CONE works via designing (evolving) sets of ANN controllers
that such that they cooperate in order to accomplish a given collective behavior
task. CONE uses a cooperative co-evolution process in order to evolve, evaluate,
and propagate controller behaviors via simultaneously exploring different niches
of the genotype space. To demonstrate the efficacy of CONE as a controller
design method it was applied in three collective behavior case studies. The col-
lective behavior case studies investigated were the pursuit-evasion (chapter 4),
the multi-rover (chapter 5), and the gathering and collective construction task
(chapter 6). Each of these was a complex non-linear control task that required
at least two controllers with minimal a priori knowledge, to work cooperatively.
Also, in each case study, task accomplishment mandated that controllers adopt
complementary behavioral specializations that worked well together.

7.1.1 Contributions of CONE

An analysis of experimental results yielded from each of the collective behavior
case studies elucidated the following contributions of CONE.

1. The cooperative co-evolution process of CONE requires both behavioral
specialization and genotype difference metrics in order to evolve special-
ized controllers. The behaviors of these controllers complement each other
for the purpose of producing a collective behavior solution. This was il-
lustrated in the experimental analysis of each of the case studies.

2. CONE dynamically identifies the degree of behavioral specialization re-
quired by a given collective behavior task. CONE then facilitates the
behavioral specialization appropriate for controllers to optimally (or near



7. Discussion and Future Directions 155

optimally) solve the task. This is accomplished by complex interaction
of the behavioral specialization and genotype difference metrics, which
adaptively directs a search for beneficial specialized behaviors.

3. Given that CONE effectuates behavioral specialization in controllers, CONE
is most appropriately applied to collective behavior tasks that require be-
haviorally specialized controllers, where such controllers must cooperate
in order to produce a collective behavior solution.

7.1.2 Emergent Specialization and CONE

The collective behavior case studies indicated that if a task does not require,
or does not benefit from specialization, then CONE will not facilitate emergent
behavioral specialization. CONE uses a multiple population cooperative co-
evolution architecture that implements behavioral specialization and genotype
difference metrics. The function of these metrics is described in the following.

1. Genotype difference metric: Operates via encouraging the recombination
of similar genotypes in different populations. Similarities of genotypes are
measured according to average connection weight differences of the neu-
rons that they encode. The genotype metric encourages the recombination
of genotypes that are specialized to similar functions, where such functions
beneficially contribute to controller performance. However, similar geno-
types in different populations may encode very different functionalities, so
recombination may produce genotypes (neurons) that do not work in a
controller. The specialization metric addresses this problem.

2. Behavioral specialization difference metric: Operates via encouraging the
recombination of controllers that are specialized to similar behaviors, where
such specializations benefit task performance. If the degree of behav-
ioral specialization measured for each controller is too high for producing
increasingly fit controllers, then the specialization metric allows for the
recombination of controllers that exhibit less behavioral similarities. If
the degree of specialization measured for each controller is too low for
increasing controller fitness, then the specialization metric restricts con-
troller recombination to those that exhibit more behavioral similarities.
Regulation recombination between populations (controllers) has the af-
fect of propagating behaviorally specialized controllers that beneficially
contribute to collective behavior task performance.

An experimental analysis conducted for each case study indicated two im-
portant results. First, without either the GDM or SDM, CONE evolved teams
lose their advantage of a significantly higher task performance. Second, geno-
types in different populations (of behaviorally similar controllers) needed to be
very similar in order to be recombined. This provides an explanation for why
either the GDM or SDM are ineffective alone. The GDM and SDM working in
company provide a double check mechanism for determining if recombination



7. Discussion and Future Directions 156

should occur between populations. Hence, having both the SDM and GDM as
regulation mechanisms reduces the amount of recombination between popula-
tions and increases the likelihood that only similar and beneficial specialized
behaviors are recombined and propagated. Also, the interaction of the SDM
and GDM regulates recombination between populations such that the chances
of producing deleterious offspring is minimal. This aids in directing a search
of the genotype space such that beneficial niches in the solution space (high
performance controllers) are identified and propagated.

7.1.3 Neuro-Evolution as a Controller Design Method

In the collective behavior case studies, CONE was comparatively evaluated with
related controller design methods and was demonstrated as yielding a signifi-
cantly higher task performance. This is a result which supports related research
[49], [175], [13], [21] that has demonstrated NE as an effective approach to
controller design in artificial collective behavior systems. Applying NE for con-
troller design is especially prevalent in multi-robot systems, where the goal is to
evolve ANN controllers for simulated multi-robot systems, and then to transfer
evolved controllers to a counter-part physical multi-robot system [124].

7.2 Future Directions

7.2.1 A General Specialization Metric

The specialization metric (section 3.2.2) used by CONE, makes certain assump-
tions regarding a controller’s behavior. For example, that a controller’s behavior
is determined by v distinct motor outputs, and that behavioral specialization
exhibited by a controller is definable by the frequency with which the controller
switches between executing each of its motor outputs. In order to broaden
the applicability of CONE to a diverse range of collective behavior systems, a
general definition of specialization that does not place constraints on controller
architecture, or impose a designer specified threshold for when a controller is
specialized, would be required. Currently, there is no canonical definition of
behavioral specialization, and consequently there exists a disparate range of
methods for measuring behavioral specialization in single or multi-agent sys-
tems. Section 2.1.3 overviews collective behavior specialization metrics.

A general definition of specialization that accounts for any type of emergent
specialization, such as behavioral and morphological, that operates in collec-
tive behavior systems, would significantly contribute to research in automated
controller design methods, and could also contribute to research in biological
fields. Such a generalized specialization definition would allow the develop-
ment of methods that dynamically evolve collective behavior solutions via using
emergent phenomena as a problem solver, as well as potentially elucidating the
mechanisms that lead to specialization in nature. The research presented in
this thesis was a first step in deriving an automated controller design method



7. Discussion and Future Directions 157

that evolves collective behavior solutions via effectuating and using emergent
phenomena as part of the problem solving process.

7.2.2 Introducing Plasticity into the CONE Architecture

In the current CONE architecture the number of genotype populations equals
the number of controllers in the collective behavior system. The number of con-
trollers is specified a priori by the system designer. A more flexible approach
would be to begin with a single population of genotypes, and have the CONE
process adapt the number of populations (that is, species) in response to task
and environment constraints. The goal of such an approach would be to have
species dynamically emerge in response to identified subtasks in a given collec-
tive behavior task. Ideally, each species would be suited for solving a specific
subtask, and together the species would produce a collective behavior solution.
A self adapting population that is able to dynamically split into multiple species
as a function of identified subtasks would afford a collective behavior controller
design method with a high degree of flexibility, adaptability, and applicability.
Such an approach was proposed by Potter [136] and applied by Stanley [158] in
order to solve various single agent (non collective behavior) tasks [160], [159].

CONE uses direct encoding in order to map genotypes to controllers. The
number of sensory inputs and motor outputs is static and needs to be specified
by the system designer according to collective behavior task requirements. A
beneficial extension to this architecture would be for CONE to employ a devel-
opmental approach that derives a number of sensory input and motor output
neurons in response to task and environment constraints. The implementation
of developmental mechanisms for evolving controller topology, as employed by
NEAT [158] and HyperNEAT [162], would allow each controller to more effi-
ciently and effectively adapt to, and solve subtasks that constitute any given
collective behavior task. For example, in a given collective behavior task, cer-
tain subtasks may require a complex sensory input to motor output mapping
in order to accomplish, whilst other subtasks may require relatively few sensory
inputs and simple motor outputs. A developmental approach to solving collec-
tive behavior tasks would alleviate the need for a system designer to specify
the architecture and number of controllers a priori. Such an approach would
also have important consequences for real world collective behavior applications,
since a developmental controller design method would be highly adaptive and
require minimal knowledge of the environment or how to solve a given task.



Appendices

158



APPENDIX A: STATISTICAL COMPARISONS IN THE
PURSUIT-EVASION TASK

This appendix presents statistical comparisons of task performances of evolved
teams, and an analysis of the role of the genotype and specialization difference
metrics in the task performances of evolved teams.

Prey Capture Time Comparisons

Figure 4.10 presents average prey capture times (calculated over 20 experimental
runs) yielded by HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved groups for all group types. Figure 4.10 indicates that CONE evolved
groups yield comparatively higher performances for group types 4, 5, 8, 9, and
10, and comparable performances for groups types 1, 2, 3, 6, and 7.

In order to draw conclusions from this comparative study, a set of statisti-
cal tests are performed in order to gauge task performance differences between
respective method results. Data sets representing results of the HomCNE, Het-
CNE, CCGA, Multi-Agent ESP, and CONE methods are found to conform to
normal distributions via applying the Kolmogorov-Smirnov test [48]. Specif-
ically, P = [0.42, 0.36, 0.32, 0.79] is calculated for the HomCNE, HetCNE,
CCGA, Multi-Agent ESP, and CONE data distributions, respectively. To de-
termine if there is a statistically significant difference between method results
presented in figure 4.10 an independent t-test [48] is applied. The threshold
for statistical significance is 0.05, and the null hypothesis is that data sets do
not significantly differ. Table A-1 presents the P values for t-tests conducted
between average prey capture times yielded by HomCNE, HetCNE, CCGA,
Multi-Agent ESP, and CONE evolved groups for all group types. In table A-1,
a value of 0.0001 indicates that a value of less than 0.0001 is calculated by the
t-test. A value typed in italics indicates that the null hypothesis is rejected for
the given t-test, and that there is no significant difference between the given
task performance results. Values not in italics indicate that the null hypothe-
sis is accepted and that there is a significant difference between the given task
performance results.

The Role of Difference Metrics in CONE

This analysis supports the efficacy of the Genotype Difference Metric (GDM)
and the Specialization Difference Metric (SDM) for facilitating behavioral spe-



Appendix A: Statistical Comparisons in the Pursuit-Evasion Task 160

Tab. A-1: Statistical Comparison of Prey Capture Times: T-test values for HomCNE, Het-
CNE, CCGA, MESP, and CONE evolved groups. HomCNE: Homogenous Conven-
tional Neuro-Evolution. HetCNE: Heterogenous Conventional Neuro-Evolution.
CCGA: Cooperative Co-evolutionary Genetic Algorithm. MESP: Multi-Agent
Enforced Sub-Populations. CONE: Collective Neuro-Evolution.

Group Type

Group 1 2 3 4 5 6 7 8 9 10

HomCNE vs
CCGA

0.0001 0.11 0.37 0.0001 0.0001 0.89 0.62 0.0001 0.0001 0.077

HomCNE vs
MESP

0.0001 0.044 0.0078 0.0001 0.0001 0.75 0.70 0.0001 0.0001 0.54

HomCNE vs
CONE

0.0001 0.0015 0.84 0.0001 0.0001 0.12 0.073 0.0001 0.0001 0.0001

HomCNE vs
HetCNE

0.19 0.15 0.84 0.21 0.13 0.12 0.17 0.26 0.45 0.13

HetCNE vs
CCGA

0.0001 0.11 0.37 0.0001 0.0001 0.89 0.62 0.0001 0.0001 0.077

HetCNE vs
MESP

0.0001 0.044 0.0078 0.0001 0.0001 0.75 0.70 0.0001 0.0001 0.54

HetCNE vs
CONE

0.0001 0.0015 0.84 0.0001 0.0001 0.12 0.073 0.0001 0.0001 0.0001

CCGA vs
MESP

0.47 0.42 0.24 0.75 0.069 0.75 0.071 0.25 0.79 0.27

CCGA vs
CONE

0.16 0.081 0.11 0.0001 0.0001 0.28 0.28 0.0001 0.0001 0.0001

MESP vs
CONE

0.46 0.093 0.055 0.0001 0.0001 0.14 0.11 0.0001 0.0001 0.0001



Appendix A: Statistical Comparisons in the Pursuit-Evasion Task 161

Tab. A-2: The role of GDM and SDM in CONE: Comparative t-test results of teams evolved
with CONE and CONE variants. without the GDM (Genotype Difference Metric),
SDM (Specialization Difference Metric), GDM and SDM. CONE: Team evolved
with original CONE setup (both GDM and SDM active). CONE-1: Team evolved
by CONE without GDM. CONE-2: Team evolved by CONE without SDM.
CONE-3: Team evolved by CONE without GDM and SDM.

Group Type

Predator
Team

1 2 3 4 5 6 7 8 9 10

CONE-1 vs
CONE

0.17 0.19 0.22 0.23 0.55 0.52 0.51 0.57 0.42 0.45

CONE-2 vs
CONE

0.29 0.32 0.33 0.40 0.38 0.43 0.29 0.11 0.16 0.23

CONE-3 vs
CONE

0.44 0.29 0.32 0.41 0.42 0.55 0.42 0.42 0.55 0.58

cialization, and increasing task performance in CONE evolved teams. As part
of this analysis, CONE is re-executed with the following experimental setups.

1. CONE without GDM (CONE-1 in table A-2: Predator teams are evolved
by CONE without the GDM. The SDM for inter-population genotype
recombination remains active.

2. CONE without SDM (CONE-2 in table A-2: Teams are evolved by CONE
without the SDM. The GDM remains active.

3. CONE without GDM and SDM (CONE-3 in table A-2: Teams are evolved
by CONE without the GDM and SDM.

Figure 4.11 presents prey-capture times that result from applying each of
the variants to the original CONE experimental setup (CONE-1, CONE-2, and
CONE-3) for team types 1 to 10. Prey-capture results are averaged over 20 ex-
perimental runs. For comparison, results previously attained by CONE evolved
teams are also presented in figure 4.11. A statistical comparison of results pre-
sented in figure 4.11 indicate that teams evolved by CONE without the GDM
(CONE-1), SDM (CONE-2), and both the GDM and SDM (CONE-3), yielded
a significantly lower task performance comparable to CONE evolved teams (for
all team types except 1, 6 and 7). Table A-2 in appendix A, presents t-test
values resulting from this statistical comparison. That is, for a majority of the
team types tested, both the GDM and SDM are beneficial in terms of increasing
the task performance of CONE evolved predator teams.



APPENDIX B: EMERGENT BEHAVIORS IN THE
PURSUIT-EVASION TASK

This appendix presents ancillary information and results for the pursuit-evasion
collective behavior case study presented in chapter 4. In particular, the methods
used to define and reproduce individual and collective behaviors observed in the
pursuit-evasion simulations are elaborated upon. Furthermore, ranges of sensor
activation values and motor output activation values corresponding to defined
individual and collective behaviors are presented.

In order to reproduce individual predator behaviors, and collective prey-
capture behaviors, the fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP and
CONE evolved teams are executed in a new set of pursuit-evasion experiments.
For each of the fittest teams, 20 new experimental runs are executed. Re-
executing the fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams in a new set of simulations allows for the measurement of predator
light and proximity sensor readings.

For each predator, these sensor readings are correlated with specific motor
outputs, where distinct ranges of motor outputs correspond to distinct individ-
ual behaviors. In certain simulation instances, the interaction of such individual
behaviors produces a collective prey-capture behavior.

Defining Individual Predator Behaviors

For each experiment that re-executes a fittest team, 20 instances of individual
behaviors are randomly sampled. Sensor values are then measured for the dura-
tion of an individual behavior. The duration of an individual behavior is defined
by the time that a given predator is within proximity sensor range of at least
one other predator, and within light sensor range of a prey.

Sensor values are measured for each light and proximity input neuron. Av-
erages values are then calculated (over all predators in a given fittest team) for
each proximity and light input neuron. These average values for each sensory
input neuron are used to reproduce individual predator behaviors. Individual
predator behaviors are reproduced by manually setting the sensory input neu-
rons of a predator’s ANN controller with the average activation value calculated
for each sensory input neuron.

Given the measurement of different sensor value activation ranges, five dis-
tinct individual predator behaviors are defined. These individual behaviors are
labeled as follows: Pursuer, Blocker, Flanker, Knocker, and Idle. The value



Appendix B: Emergent Behaviors in the Pursuit-Evasion Task 163

range of light and proximity sensor values is divided into ten segments in the
range: [0, 1]. The portion of a given behavior’s duration that the light or
proximity sensors are active is then measured for each of the ten segments.

Defining Collective Prey-Capture Behaviors

The interaction of at least two individual predator behaviors produce a prey-
capture behavior. The interaction of individual behaviors is defined as two
predators being within proximity sensor range of each other and within light
sensor range of a prey.

Average proximity and light sensor values for each of the prey-capture be-
haviors are not presented, since such values are simply an average of at least
two individual predators measured over the course of a prey-capture behavior.
Where, the course of a prey-capture behavior is defined as the time for which
at least two predators are within proximity sensor range of each other and light
sensor range of a prey.

Furthermore, prey-capture behaviors are reproduced by first reproducing at
least two individual predator behaviors. Various combinations of individual
behaviors are then combined until the prey-capture behaviors observed for each
the fittest teams have been reproduced.

Given this scheme for reproducing prey-capture behaviors, five prey-capture
behaviors observed in experiments that re-executed the fittest teams are re-
produced. These prey-capture behaviors are labeled as follows: Entrapment,
Pursuer-blocker, Role-switcher and Spiders-fly.

Calculating Sensor Values for Individual Behaviors

For a given fittest team, the average proximity and light sensor activation values
for individual predator behaviors are calculated in the following manner.

1. For the duration that a given predator is within proximity sensor range of
at least one other predator and within light sensor range of a prey, the acti-
vation values of all infrared proximity and light sensors are recorded. This
duration constitutes the occurrence of an individual predator behavior.

2. The average value of each proximity and light sensor input neuron is cal-
culated for the duration of the individual behavior.

3. The average of all proximity and light sensor input neurons is then calcu-
lated for the duration of this individual behavior.

4. An average proximity and light sensor value is then calculated over all of
the 20 sampled individual predator behaviors.

This process is repeated for each predator in a given fittest team.
Figure B-1 presents the average light sensor values measured over 20 samples

of the pursuer individual predator behavior. Figure B-2 presents the average



Appendix B: Emergent Behaviors in the Pursuit-Evasion Task 164

Fig. B-1: Pursuer Behavior: Average light sensor values for each range segment, for all
predators in the fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams.

Fig. B-2: Blocker Behavior: Average light sensor values for each range segment, for all
predators in the fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams.



Appendix B: Emergent Behaviors in the Pursuit-Evasion Task 165

Fig. B-3: Knocker Behavior: Average light sensor values for each range segment, for all
predators in the fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams.

Fig. B-4: Flanker Behavior: Average light sensor values for each range segment, for all
predators in the fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams.



Appendix B: Emergent Behaviors in the Pursuit-Evasion Task 166

Fig. B-5: Idle Behavior: Average light and proximity sensor values for each range segment,
for all predators in the fittest CONE evolved team.

light sensor values measured over 20 samples of the blocker individual predator
behavior. Figure B-3 presents the average light sensor values measured over 20
samples of the knocker individual predator behavior. Figure B-4 presents the
average light sensor values measured over 20 samples of the flanker individual
predator behavior. Figure B-5 presents the average light and proximity sensor
values measured over 20 samples of the idle individual predator behavior.

Figure B-6 presents the average proximity sensor values measured over 20
samples of the pursuer individual predator behavior. Figure B-7 presents the
average proximity sensor values measured over 20 samples of the blocker individ-
ual predator behavior. Figure B-8 presents the average proximity sensor values
measured over 20 samples of the knocker individual predator behavior. Figure
B-9 presents the average proximity sensor values measured over 20 samples of
the flanker individual predator behavior.



Appendix B: Emergent Behaviors in the Pursuit-Evasion Task 167

Fig. B-6: Pursuer Behavior: Average proximity sensor values for each range segment, for all
predators in the fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams.

Fig. B-7: Blocker Behavior: Average proximity sensor values for each range segment, for all
predators in the fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams.



Appendix B: Emergent Behaviors in the Pursuit-Evasion Task 168

Fig. B-8: Knocker Behavior: Average proximity sensor values for each range segment, for all
predators in the fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams.

Fig. B-9: Flanker Behavior: Average proximity sensor values for each range segment, for all
predators in the fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams.



APPENDIX C: STATISTICAL COMPARISONS IN THE
MULTI-ROVER TASK

This appendix presents a statistical comparison of task performance results and
an analysis of emergent collective behaviors exhibited by evolved teams.

Behavioral Compositions of Fittest Evolved Rover Teams in
Simple Environments

Tables C-1, C-2, C-3, C-4, and C-5 present the behavioral composition of the
fittest HomCNE, HetCNE, CCGA, Multi-Agent ESP and CONE evolved teams,
respectively, where these teams were evolved in the simple environments. In
these tables, red rock distribution (RRD) refers to one of the ten environments
within the simple environment set. Red rock distributions are described in
section 5.1.4. The behavioral compositions of the fittest teams evolved by Hom-
CNE, HetCNE, CCGA, Multi-Agent ESP and CONE are presented for each of
the simple environments. Behavioral composition refers to the composite num-
ber of rovers in each team that are non-specialized or specialized to activating
red rock detection sensors with either the low-res, med-res, or hi-res settings
(section 5.2.6).

Behavioral Compositions of Fittest Evolved Rover Teams in
Complex Environments

Tables C-6, C-7, C-8, C-9, and C-10 present the behavioral compositions of
the fittest teams evolved by HomCNE, HetCNE, CCGA, Multi-Agent ESP, and
CONE in the complex environments. In these tables, Red Rock Distribution
(RRD) refers to one of the ten environments within the complex environment
set, where each environment corresponds to a given red rock distribution (sec-
tion 5.1.4). Behavioral compositions of evolved teams are defined according to
the number of rovers that adopt either the low-res, med-res, or hi-res detector
specialization, or no behavioral specialization (section 5.2.6).



Appendix C: Statistical Comparisons in the Multi-Rover Task 170

Tab. C-1: Behavioral Compositions of Fittest HomCNE Evolved Teams in Simple Environ-
ments: For teams of 20 rovers. HomCNE: Homogenous Conventional Neuro-
Evolution. Low-/Med-/Hi-Res Detectors: Rovers specialized to low-res, med-res,
and hi-res detection. Mover: Rovers specialized to moving. Non-Specialized: Non-
specialized rover. RRD: Red Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 0 20 0 0 0

2 0 20 0 0 0

3 0 20 0 0 0

4 0 20 0 0 0

5 0 20 0 0 0

6 0 20 0 0 0

7 20 0 0 0 0

8 20 0 0 0 0

9 20 0 0 0 0

10 20 0 0 0 0

Tab. C-2: Behavioral Compositions of Fittest HetCNE Evolved Teams in Simple Environ-
ments: For teams of 20 rovers. HetCNE: Heterogenous Conventional Neuro-
Evolution. Low-/Med-/Hi-Res Detectors: Rovers specialized to low-res, med-res,
and hi-res detection. Mover: Rovers specialized to moving. Non-Specialized: Non-
specialized rover. RRD: Red Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 0 20 0 0 0

2 0 20 0 0 0

3 0 20 0 0 0

4 0 20 0 0 0

5 0 20 0 0 0

6 0 20 0 0 0

7 0 20 0 0 0

8 0 20 0 0 0

9 0 20 0 0 0

10 0 20 0 0 0



Appendix C: Statistical Comparisons in the Multi-Rover Task 171

Tab. C-3: Behavioral Compositions of Fittest CCGA Evolved Teams in Simple Environ-
ments: For teams of 20 rovers. CCGA: Cooperative Co-evolutionary Genetic
Algorithm. Low-/Med-/Hi-Res Detectors: Rovers specialized to low-res, med-
res, and hi-res detection. Mover: Rovers specialized to moving. Non-Specialized:
Non-specialized rover. RRD: Red Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 0 2 9 0 9

2 0 3 7 0 10

3 0 2 11 0 7

4 0 1 10 0 9

5 0 3 9 0 8

6 0 2 10 0 8

7 0 5 5 0 10

8 0 3 7 0 10

9 0 4 5 0 11

10 0 4 4 0 12

Tab. C-4: Behavioral Compositions of Fittest MESP Evolved Teams in Simple Environ-
ments: For teams of 20 rovers. MESP: Multi-Agent Enforced Sub-Populations.
Low-/Med-/Hi-Res Detectors: Rovers specialized to low-res, med-res, and hi-res
detection, respectively. Mover: Rovers specialized to moving. Non-Specialized:
Non-specialized rovers. RRD: Red Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 0 5 10 0 5

2 0 4 12 0 4

3 0 4 9 0 7

4 0 3 12 0 5

5 0 4 11 0 5

6 0 3 10 0 7

7 4 2 5 0 9

8 2 4 6 0 8

9 3 4 5 0 8

10 2 6 5 0 7



Appendix C: Statistical Comparisons in the Multi-Rover Task 172

Tab. C-5: Behavioral Composition of Fittest CONE Evolved Teams in Simple Environments:
For teams of 20 rovers. CONE: Collective Neuro-Evolution. Low-/Med-/Hi-Res
Detectors: Rovers specialized to low-res, med-res, and hi-res detection, respec-
tively. Mover: Rovers specialized to moving. Non-Specialized: Rovers not special-
ized to any behavior. RRD: Red Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 0 7 8 0 5

2 3 6 7 0 4

3 4 5 8 0 3

4 3 5 9 0 3

5 2 4 9 0 5

6 3 5 8 0 4

7 4 4 7 0 5

8 5 4 6 0 5

9 3 5 8 0 4

10 5 4 4 0 7

Tab. C-6: Fittest HomCNE Evolved Team Compositions in Complex Environments: For
teams of 20 rovers. HomCNE: Homogenous Conventional Neuro-Evolution. Low-
/Med-/Hi-Res Detectors: Rovers specialized to low-res, med-res, and hi-res detec-
tion, respectively. Mover: Rovers specialized to moving. Non-Specialized: Non-
specialized rover. RRD: Red Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 0 20 0 0 0

2 0 20 0 0 0

3 0 20 0 0 0

4 0 20 0 0 0

5 0 20 0 0 0

6 0 20 0 0 0

7 0 0 20 0 0

8 0 0 20 0 0

9 0 0 20 0 0

10 0 0 20 0 0



Appendix C: Statistical Comparisons in the Multi-Rover Task 173

Tab. C-7: Fittest HetCNE Evolved Team Compositions in Complex Environments: For
teams of 20 rovers. HetCNE: Heterogenous Conventional Neuro-Evolution. Low-
/Med-/Hi-Res Detectors: Rovers specialized to low-res, med-res, and hi-res detec-
tion, respectively. Mover: Rovers specialized to moving. Non-Specialized: Non-
specialized rover. RRD: Red Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 0 0 20 0 0

2 0 0 20 0 0

3 0 0 20 0 0

4 0 0 20 0 0

5 0 0 20 0 0

6 0 0 20 0 0

7 0 0 20 0 0

8 0 0 20 0 0

9 0 0 20 0 0

10 0 0 20 0 0

Tab. C-8: Fittest CCGA Evolved Team Compositions in Complex Environments: For teams
of 20 rovers. CCGA: Cooperative Co-evolutionary Genetic Algorithm. Low-
/Med-/Hi-Res Detectors: Rovers specialized to low-res, med-res, and hi-res de-
tection, respectively. Mover: Rovers specialized to moving. Non-Specialized:
Non-specialized rover. RRD: Red Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 4 6 9 0 1

2 2 8 8 0 2

3 2 5 8 0 5

4 1 6 7 0 6

5 0 3 11 0 6

6 0 3 10 0 7

7 0 2 9 0 9

8 0 3 10 0 7

9 0 0 10 0 10

10 0 0 11 0 9



Appendix C: Statistical Comparisons in the Multi-Rover Task 174

Tab. C-9: Fittest MESP Evolved Team Compositions in Complex Environments: For teams
of 20 rovers. MESP: Multi-Agent Enforced Sub-Populations. Low-/Med-/Hi-Res
Detectors: Rovers specialized to low-res, med-res, and hi-res detection, respec-
tively. Mover: Rovers specialized to moving. Non-Specialized: Non-specialized
rovers. RRD: Red Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 2 6 6 0 6

2 3 5 7 0 5

3 3 6 5 0 6

4 0 6 5 0 9

5 0 5 5 0 10

6 0 4 7 0 9

7 0 3 6 0 11

8 0 4 8 0 8

9 0 3 7 0 10

10 0 2 12 0 6

Tab. C-10: Fittest CONE Evolved Team Compositions in Complex Environments: For teams
of 20 rovers. CONE: Collective Neuro-Evolution. Low-/Med-/Hi-Res Detectors:
Rovers specialized to low-res, med-res, and hi-res detection, respectively. Mover:
Rovers specialized to moving. Non-Specialized: Rovers not specialized to any
behavior. RRD: Red Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 6 7 5 0 2

2 5 8 6 0 1

3 5 6 7 0 2

4 4 5 7 0 4

5 4 4 7 0 5

6 5 5 6 0 4

7 4 5 6 0 5

8 5 4 7 0 4

9 3 5 8 0 4

10 3 4 8 0 5



Appendix C: Statistical Comparisons in the Multi-Rover Task 175

Comparing Task Performance Results of Teams Evolved in Simple
and Complex Environments

Data sets of the HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams presented in figures 5.8, 5.9, 5.10, and 5.11, are found to conform
to normal distributions via applying the Kolmogorov-Smirnov test [48].

• For the HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE data
distributions represented in figure 5.8, the respective P values: [0.60, 0.64,
0.72, 0.83, 0.48] are calculated.

• For the HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE data
distributions represented in figure 5.9, the respective P values: [0.67, 0.76,
0.69, 0.70, 0.75] are calculated.

• For the HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE data
distributions represented in figure 5.10, the respective P values: [0.55,
0.60, 0.78, 0.78, 0.65] are calculated.

• For the HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE data
distributions represented in figure 5.11, the respective P values: [0.74,
0.87, 0.79, 0.67, 0.77] are calculated.

Table C-11 presents the P values for t-tests conducted between the average
red rock value detected by teams evolved in the simple and complex environ-
ments. Table C-12 presents the P values for t-tests conducted between the av-
erage area covered by teams evolved in the simple and complex environments.
For both tables C-11 and C-12, a value of 0.0001 indicates that a value of less
than 0.0001 is calculated by the t-test. A value typed in italics indicates that the
null hypothesis is rejected for the given t-test, and that there is no significant
difference between the given task performance results. Values not in italics indi-
cate that the null hypothesis is accepted and that there is a significant difference
between the given task performance results.

Comparing Teams Evolved in the Complex Environments

Data sets of the HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams presented in figures 5.10, and 5.11, are found to conform to
normal distributions via applying the Kolmogorov-Smirnov test [48].

• For HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE, red rock
value detected data distributions represented in figure 5.10, the respective
P values: [0.62, 0.66, 0.82, 0.71, 0.58] are calculated.

• For HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE, area cov-
ered data distributions represented in figure 5.11, the respective P values:
[0.55, 0.64, 0.68, 0.76, 0.67] are calculated.



Appendix C: Statistical Comparisons in the Multi-Rover Task 176

Tab. C-11: Statistical Comparison of Red Rock Value Detected by Teams Evolved in Sim-
ple and Complex Environments: T-test values for HomCNE, HetCNE, CCGA,
MESP, and CONE evolved teams. HomCNE: Homogenous Conventional Neuro-
Evolution. HetCNE: Heterogenous Conventional Neuro-Evolution. CCGA: Co-
operative Co-evolutionary Genetic Algorithm. MESP: Multi-Agent Enforced
Sub-Populations. CONE: Collective Neuro-Evolution.

Simple and Complex Environment

Team 1 2 3 4 5 6 7 8 9 10

HomCNE vs
HomCNE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HetCNE vs
HetCNE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

CCGA vs
CCGA

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.12 0.28 0.0005 0.0001

MESP vs
MESP

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.42 0.83 0.0005 0.0003

CONE vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0006 0.0002

Tab. C-12: Statistical Comparison of Area Covered by Teams Evolved in Simple and Com-
plex Environments: T-test values for HomCNE, HetCNE, CCGA, MESP, and
CONE evolved teams. HomCNE: Homogenous Conventional Neuro-Evolution.
HetCNE: Heterogenous Conventional Neuro-Evolution. CCGA: Cooperative Co-
evolutionary Genetic Algorithm. MESP: Multi-Agent Enforced Sub-Populations.
CONE: Collective Neuro-Evolution.

Simple and Complex Environment

Team 1 2 3 4 5 6 7 8 9 10

HomCNE vs
HomCNE

0.057 0.18 0.076 0.20 0.22 0.31 0.088 0.057 0.0067 0.0028

HetCNE vs
HetCNE

0.095 0.12 0.065 0.28 0.12 0.16 0.098 0.097 0.13 0.19

CCGA vs
CCGA

0.29 0.060 0.093 0.057 0.25 0.11 0.0075 0.053 0.011 0.0008

MESP vs
MESP

0.064 0.35 0.024 0.044 0.22 0.19 0.028 0.067 0.14 0.15

CONE vs
CONE

0.28 0.14 0.45 0.076 0.047 0.10 0.56 0.78 0.15 0.68



Appendix C: Statistical Comparisons in the Multi-Rover Task 177

Tab. C-13: Statistical Comparison of Red Rock Value Detected by Teams in Complex En-
vironments: T-test values for teams evolved by HomCNE, HetCNE, CCGA,
MESP, and CONE. HomCNE: Homogenous Conventional Neuro-Evolution. Het-
CNE: Heterogenous Conventional Neuro-Evolution. CCGA: Cooperative Co-
evolutionary Genetic Algorithm. MESP: Multi-Agent Enforced Sub-Populations.
CONE: Collective Neuro-Evolution.

Complex Environment

Team 1 2 3 4 5 6 7 8 9 10

HomCNE vs
CCGA

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HomCNE vs
MESP

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HomCNE vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HetCNE vs
CCGA

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HetCNE vs
MESP

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HetCNE vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

CCGA vs
MESP

0.65 0.30 0.37 0.34 0.29 0.33 0.38 0.45 0.082 0.30

CCGA vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003 0.0001 0.0001 0.0001

MESP vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Table C-13 presents the P values for t-tests conducted between the average
red rock value detected by teams evolved in the complex environment set. Table
C-14 presents the P values for t-tests conducted between the average area cov-
ered by teams evolved in the complex environment set. For both tables C-13 and
C-14, a value of 0.0001 indicates that a value of less than 0.0001 is calculated by
the t-test. A value typed in italics indicates that the null hypothesis is rejected
for the given t-test, and that there is no significant difference between the given
task performance results. Values not in italics indicate that the null hypothe-
sis is accepted and that there is a significant difference between the given task
performance results.

Behavioral Compositions of Fittest Teams Evolved in Extended
Complex Environments

Tables C-15, C-16 C-17, C-18, and C-19 present the behavioral composition of
the fittest teams evolved by HomCNE, HetCNE, CCGA, Multi-Agent ESP and
CONE in each of the extended complex environments. Behavioral composition
refers to the composite number of rovers in each team that are non-specialized



Appendix C: Statistical Comparisons in the Multi-Rover Task 178

Tab. C-14: Statistical Comparison of Area Covered by Teams in Complex Environments: T-
test values for teams evolved by HomCNE, HetCNE, CCGA, MESP, and CONE.
HomCNE: Homogenous Conventional Neuro-Evolution. HetCNE: Heterogenous
Conventional Neuro-Evolution. CCGA: Cooperative Co-evolutionary Genetic
Algorithm. MESP: Multi-Agent Enforced Sub-Populations. CONE: Collective
Neuro-Evolution.

Complex Environment

Team 1 2 3 4 5 6 7 8 9 10

HomCNE vs
CCGA

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.84 0.044 0.093 0.035

HomCNE vs
MESP

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.40 0.12 0.083 0.37

HomCNE vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HetCNE vs
CCGA

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.70 0.13 0.0001 0.0001

HetCNE vs
MESP

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.18 0.0005 0.15 0.0009

HetCNE vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

CCGA vs
MESP

0.35 0.69 0.55 0.59 0.54 0.40 0.17 0.31 0.93 0.0053

CCGA vs
CONE

0.0001 0.0011 0.0001 0.0001 0.0002 0.0019 0.0001 0.0001 0.0001 0.0001

MESP vs
CONE

0.0001 0.0007 0.0001 0.0001 0.0007 0.03 0.0001 0.0001 0.0001 0.0001



Appendix C: Statistical Comparisons in the Multi-Rover Task 179

Tab. C-15: Fittest HomCNE Evolved Team Compositions in the Extended Complex Envi-
ronment Set: For teams of 20 rovers. HomCNE: Homogenous Conventional
Neuro-Evolution. Low-/Med-/Hi-Res Detectors: Rovers specialized to the low-
res, med-res, and hi-res detection behavior, respectively. Mover: Rovers special-
ized to moving. Non-Specialized: Rovers not specialized to any behavior. RRD:
Red Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 20 0 0 0 0

2 0 0 0 0 20

3 0 0 0 0 20

4 0 0 20 0 0

5 20 0 0 0 0

6 0 0 0 0 20

7 0 0 0 0 20

8 0 0 20 0 0

9 20 0 0 0 0

10 0 0 20 0 0

or specialized to activating red rock detection sensors with either the low-res,
med-res, or hi-res settings. In tables C-15, C-16, C-17, C-18, and C-19, red rock
distribution (RRD) refers to one of the ten environments within the extended
complex environment set, where each environment corresponds to a given red
rock distribution (section 5.1.4).

Task Performance of Fittest Teams Evolved in Extended Complex
Environments

Tables C-20 and C-21 present the red rock value detected and area covered,
respectively, by the fittest teams evolved by HomCNE, HetCNE, CCGA, Multi-
Agent ESP and CONE in each of the extended complex environments.

Comparing Results of Teams Evolved in Extended Complex
Environments

Data sets of the HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams presented in figures 5.12 and 5.13, are found to conform to normal
distributions via applying the Kolmogorov-Smirnov test [48].

• For the HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE data
distributions represented in figure 5.12, the respective P values: [0.52,
0.49, 0.70, 0.73, 0.68] are calculated.



Appendix C: Statistical Comparisons in the Multi-Rover Task 180

Tab. C-16: Fittest HetCNE Evolved Team Compositions in the Extended Complex Environ-
ment Set: For teams of 20 rovers. HetCNE: Heterogenous Conventional Neuro-
Evolution. Low-/Med-/Hi-Res Detectors: Rovers specialized to the low-res, med-
res, and hi-res detection behavior, respectively. Mover: Rovers specialized to
moving. Non-Specialized: Rovers not specialized to any behavior. RRD: Red
Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 0 0 0 0 20

2 0 0 0 0 20

3 0 0 0 0 20

4 0 0 0 0 20

5 0 0 0 0 20

6 0 0 0 0 20

7 0 0 0 0 20

8 0 0 0 0 20

9 0 0 0 0 20

10 0 0 0 0 20

Tab. C-17: Fittest CCGA Evolved Team Compositions in the Extended Complex Environ-
ment Set: For teams of 20 rovers. CCGA: Cooperative Co-evolutionary Genetic
Algorithm. Low-/Med-/Hi-Res Detectors: Rovers specialized to the low-res,
med-res, and hi-res detection behavior, respectively. Mover: Rovers specialized
to moving. Non-Specialized: Rovers not specialized to any behavior. RRD: Red
Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 11 2 0 0 7

2 4 10 0 0 6

3 1 5 5 0 9

4 0 7 6 0 7

5 11 3 0 0 6

6 5 7 0 0 6

7 0 8 2 0 10

8 0 7 7 0 6

9 8 7 0 0 5

10 0 8 6 0 6



Appendix C: Statistical Comparisons in the Multi-Rover Task 181

Tab. C-18: Fittest MESP Evolved Team Compositions in Extended Complex Environments:
For teams of 20 rovers. MESP: Multi-Agent Enforced Sub-Populations. Low-
/Med-/Hi-Res Detectors: Rovers specialized to low-res, med-res, and hi-res de-
tection, respectively. Mover: Rovers specialized to moving. Non-Specialized:
Non-specialized rovers. RRD: Red Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 12 3 0 0 5

2 7 6 0 0 7

3 0 10 3 0 7

4 0 6 6 0 8

5 10 3 0 0 7

6 2 8 2 0 8

7 4 5 5 0 6

8 0 4 8 0 8

9 10 7 0 0 3

10 0 9 7 0 4

Tab. C-19: Fittest CONE Evolved Team Compositions in Extended Complex Environments:
For teams of 20 rovers. CONE: Collective Neuro-Evolution. Low-/Med-/Hi-Res
Detectors: Rovers specialized to low-res, med-res, and hi-res detection. Mover:
Rovers specialized to moving. Non-Specialized: Rovers not specialized to any
behavior. RRD: Red Rock Distribution.

RRD Low-Res
Detectors

Med-Res
Detectors

Hi-Res De-
tectors

Mover Non-
Specialized

1 10 5 0 0 5

2 8 7 0 0 5

3 0 8 6 0 6

4 0 8 8 0 4

5 8 4 3 0 5

6 6 7 3 0 4

7 6 6 5 0 3

8 4 5 8 0 3

9 11 6 0 0 3

10 0 10 6 0 4



Appendix C: Statistical Comparisons in the Multi-Rover Task 182

Tab. C-20: Red Rock Value Detected by Fittest Teams in Extended Complex Environments:
For HomCNE, HetCNE, CCGA, MESP and CONE evolved teams. Hom-
CNE: Homogenous Conventional Neuro-Evolution. HetCNE: Heterogenous Con-
ventional Neuro-Evolution. CCGA: Cooperative Co-evolutionary Genetic Al-
gorithm. MESP: Multi-Agent Enforced Sub-Populations. CONE: Collective
Neuro-Evolution. RRD: Red Rock Distribution.

RRD HomCNE HetCNE CCGA MESP CONE

1 2975 2664 3938 3896 4591

2 2680 2745 3750 3915 4226

3 2891 2770 3875 3875 4331

4 2594 2675 3949 3930 4465

5 2970 2924 3881 3860 4426

6 2789 2814 3775 3782 4529

7 2694 2899 3977 3910 4394

8 2949 2855 4002 4067 4519

9 2814 2969 4061 3958 4433

10 2916 2809 4161 4003 4371

Tab. C-21: Area Covered by the Fittest Teams Evolved in Extended Complex Environ-
ments: Teams evolved by HomCNE, HetCNE, CCGA, MESP and CONE. Hom-
CNE: Homogenous Conventional Neuro-Evolution. HetCNE: Heterogenous Con-
ventional Neuro-Evolution. CCGA: Cooperative Co-evolutionary Genetic Al-
gorithm. MESP: Multi-Agent Enforced Sub-Populations. CONE: Collective
Neuro-Evolution. RRD: Red Rock Distribution.

RRD HomCNE HetCNE CCGA MESP CONE

1 0.70 0.69 0.79 0.78 0.92

2 0.79 0.74 0.82 0.80 0.87

3 0.77 0.75 0.79 0.81 0.88

4 0.69 0.72 0.82 0.83 0.90

5 0.76 0.73 0.86 0.86 0.93

6 0.79 0.79 0.79 0.82 0.89

7 0.80 0.77 0.81 0.81 0.88

8 0.65 0.66 0.84 0.79 0.90

9 0.68 0.65 0.80 0.82 0.91

10 0.64 0.67 0.82 0.84 0.88



Appendix C: Statistical Comparisons in the Multi-Rover Task 183

Tab. C-22: Statistical Comparison of Red Rock Value Detected by Teams Evolved in Extended
Complex Environments: T-test values for teams evolved by HomCNE, Het-
CNE, CCGA, MESP, and CONE. HomCNE: Homogenous Conventional Neuro-
Evolution. HetCNE: Heterogenous Conventional Neuro-Evolution. CCGA: Co-
operative Co-evolutionary Genetic Algorithm. MESP: Multi-Agent Enforced
Sub-Populations. CONE: Collective Neuro-Evolution.

Extended Complex Environment

Team 1 2 3 4 5 6 7 8 9 10

HomCNE vs
CCGA

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HomCNE vs
MESP

0.0001 0.0010 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HomCNE vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HetCNE vs
CCGA

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HetCNE vs
MESP

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HetCNE vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

CCGA vs
MESP

0.46 0.35 0.39 0.083 0.22 0.17 0.070 0.56 0.081 0.021

CCGA vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MESP vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

• For the HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE data
distributions represented in figure 5.13, the respective P values: [0.65,
0.71, 0.79, 0.67, 0.60] are calculated.

Comparisons for Behavioral Validation

This section presents the results of a set of statistical tests that compare the task
performances of non-specialized, low-res, med-res, and hi-res detector teams
with task performances yielded by HomCNE, HetCNE, CCGA, Multi-Agent
ESP and CONE evolved teams. For simplicity, the non-specialized, low-res,
med-res, and hi-res detector teams (section 5.5.4) are referred to as cloned teams,
and teams evolved by HomCNE, HetCNE, CCGA, Multi-Agent ESP and CONE
are referred to as evolved teams. Data sets of the cloned teams are found to
conform to normal distributions via applying the Kolmogorov-Smirnov test [48].

• P = [0.80, 0.94, 0.64, 0.72, 0.83] is calculated for the red rock value de-
tected result distributions for non-specialized, low-res, med-res, and hi-res
detector teams, respectively.



Appendix C: Statistical Comparisons in the Multi-Rover Task 184

Tab. C-23: Statistical Comparison of Area Covered by Teams Evolved in Extended Complex
Environments: T-test values for teams evolved by HomCNE, HetCNE, CCGA,
MESP, and CONE. HomCNE: Homogenous Conventional Neuro-Evolution. Het-
CNE: Heterogenous Conventional Neuro-Evolution. CCGA: Cooperative Co-
evolutionary Genetic Algorithm. MESP: Multi-Agent Enforced Sub-Populations.
CONE: Collective Neuro-Evolution.

Extended Complex Environment

Team 1 2 3 4 5 6 7 8 9 10

HomCNE vs
CCGA

0.0001 0.0001 0.081 0.0001 0.0001 0.30 0.32 0.0001 0.0001 0.0001

HomCNE vs
MESP

0.0001 0.0001 0.057 0.0001 0.0001 0.0001 0.057 0.0001 0.0001 0.0001

HomCNE vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HetCNE vs
CCGA

0.0001 0.0001 0.0001 0.0001 0.0001 0.40 0.45 0.0001 0.0001 0.0001

HetCNE vs
MESP

0.0001 0.010 0.0001 0.0001 0.0001 0.0001 0.15 0.18 0.0001 0.0001

HetCNE vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

CCGA vs
MESP

0.27 0.0001 0.40 0.024 0.17 0.0003 0.14 0.0001 0.030 0.67

CCGA vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MESP vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001



Appendix C: Statistical Comparisons in the Multi-Rover Task 185

• P = [0.66, 0.78, 0.84, 0.82, 0.76] is calculated for the area covered result dis-
tributions for non-specialized, low-res, med-res, and hi-res detector teams,
respectively.

To determine if there is a statistically significant difference between task
performance results of cloned and evolved teams, an independent t-test [48] is
applied. The threshold for statistical significance is 0.05, and the null hypothesis
is that data sets do not significantly differ.

The results of statistical task performance comparisons between cloned and
evolved teams are presented in tables C-24 and C-25. A value of 0.0001 indicates
that a value of less than 0.0001 is calculated by the t-test. A value typed in
italics indicates that the null hypothesis is rejected for the given t-test, and that
there is no significant difference between the given task performance results.
Values not in italics indicate that the null hypothesis is accepted and that there
is a significant difference between the given task performance results.

Genotype and Specialization Difference Metric Analysis

This analysis supports the efficacy of the Genotype Difference Metric (GDM),
and Specialization Difference Metric (SDM) for facilitating behavioral special-
ization, and increasing task performance in CONE evolved rover teams. To
support this the CONE method is executed with the following three variations
of the original experimental set up for CONE experiments.

1. CONE without GDM (CONE-1 in tables C-26 and C-27): Teams are
evolved using CONE without the GDM (section 3.1.2), meaning that geno-
type recombination only occurs within sub-populations of a given popula-
tion. This is also the case for Multi-Agent ESP (section 2.3.3). The SDM
for inter-population genotype recombination remains active.

2. CONE without SDM (CONE-2 in tables C-26 and C-27): Teams are
evolved using CONE without the SDM (section 3.2.2). The GDM remains
active.

3. CONE without GDM and SDM (CONE-3 in tables C-26 and C-27): Teams
are evolved using CONE without both the GDM and SDM.

Figure 5.16 presents the average red rock value detected by teams evolved
using CONE, without the GDM, SDM, and both the GDM and SDM, for all
complex environments. Figure 5.17 presents the average area covered by teams
evolved using CONE, without the GDM, SDM, and both the GDM and SDM, for
all complex environments. These task performance results are averaged over 20
experimental runs for each variation of the CONE setup and each environment.
For comparison, results previously attained by CONE (original experimental
setup) evolved teams are also presented in figures 5.16 and 5.17.

To determine if there is a statistically significant difference between task per-
formance results of HomCNE, HetCNE, CCGA, Multi-Agent ESP and CONE



Appendix C: Statistical Comparisons in the Multi-Rover Task 186

Tab. C-24: Statistical Comparison of Red Rock Value Detected by Cloned and Evolved Teams
in Complex Environments: HomCNE, HetCNE, CCGA, MESP, or CONE is
used to evolve teams. HomCNE: Homogenous Conventional Neuro-Evolution.
HetCNE: Heterogenous Conventional Neuro-Evolution. CCGA: Cooperative Co-
evolutionary Genetic Algorithm. MESP: Multi-Agent Enforced Sub-Populations.
CONE: Collective Neuro-Evolution. Cloned teams are labeled: LR: Low-Res
Detector Team. MR: Med-Res Detector Team HR: Hi-Res Detector Team NS:
Non Specialized Team.

Complex Environment

Team 1 2 3 4 5 6 7 8 9 10

LR vs Hom-
CNE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

LR vs Het-
CNE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

LR vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

LR vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

LR vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MR vs Hom-
CNE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0026 0.55 0.23 0.25 0.19

MR vs Het-
CNE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MR vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MR vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MR vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

HR vs Hom-
CNE

0.098 0.055 0.20 0.11 0.14 0.052 0.0001 0.0001 0.0001 0.0001

HR vs Het-
CNE

0.10 0.13 0.095 0.15 0.12 0.21 0.20 0.15 0.19 0.15

HR vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0069 0.0098

HR vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0005 0.0010

HR vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0012 0.0055

NS vs Hom-
CNE

0.09 0.17 0.30 0.41 0.17 0.32 0.0001 0.0001 0.0001 0.0001

NS vs Het-
CNE

0.13 0.12 0.14 0.15 0.20 0.14 0.0001 0.0001 0.0001 0.0001

NS vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

NS vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

NS vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001



Appendix C: Statistical Comparisons in the Multi-Rover Task 187

Tab. C-25: Statistical Comparison of Area Covered by Cloned and Evolved Teams in Com-
plex Environments: HomCNE, HetCNE, CCGA, MESP, or CONE is used to
evolve teams. HomCNE: Homogenous Conventional Neuro-Evolution. Het-
CNE: Heterogenous Conventional Neuro-Evolution. CCGA: Cooperative Co-
evolutionary Genetic Algorithm. MESP: Multi-Agent Enforced Sub-Populations.
CONE: Collective Neuro-Evolution. Cloned teams are labeled: LR: Low-Res De-
tector Team. MR: Med-Res Detector Team HR: Hi-Res Detector Team NS: Non
Specialized Team.

Complex Environment

Team 1 2 3 4 5 6 7 8 9 10

LR vs Hom-
CNE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

LR vs Het-
CNE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

LR vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

LR vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

LR vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MR vs Hom-
CNE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.15 0.48 0.63 0.70

MR vs Het-
CNE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MR vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0012 0.0039

MR vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0017 0.0003 0.0045

MR vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0007

HR vs Hom-
CNE

0.12 0.38 0.13 0.12 0.10 0.1 0.0001 0.0001 0.0001 0.0001

HR vs Het-
CNE

0.18 0.23 0.24 0.11 0.19 0.30 0.27 0.29 0.28 0.37

HR vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0009 0.18 0.24 0.15 0.16

HR vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.21 0.32 0.35 0.25

HR vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.12 0.19 0.22 0.24

NS vs Hom-
CNE

0.41 0.55 0.50 0.62 0.47 0.65 0.0001 0.0001 0.0001 0.0001

NS vs Het-
CNE

0.23 0.29 0.23 0.35 0.30 0.32 0.0001 0.0001 0.0001 0.0001

NS vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

NS vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

NS vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001



Appendix C: Statistical Comparisons in the Multi-Rover Task 188

evolved teams, and teams evolved using each variation of the CONE experi-
mental setup (without SDM, GDM or both SDM and GDM), an independent
t-test [48] is applied. The threshold for statistical significance is 0.05, and the
null hypothesis is that data sets do not significantly differ. Data sets of teams
evolved using CONE without GDM, CONE without SDM, and CONE without
GDM and SDM, are found to conform to normal distributions via applying the
Kolmogorov-Smirnov test [48].

• P = [0.72, 0.64, 0.80, 0.77, 0.78] is calculated for the HomCNE, HetCNE,
CCGA, Multi-Agent ESP, and CONE data distributions, respectively.

For the comparison of the average red rock value detected, the resulting P
values are presented in table C-26. For the comparison of the average area
covered, the resulting P values are presented in table C-27. A value of 0.0001
indicates that a value of less than 0.0001 is calculated by the t-test. A value
typed in italics indicates that the null hypothesis is rejected for the given t-test,
and that there is no significant difference between the given task performance
results. Values not in italics indicate that the null hypothesis is accepted and
that there is a significant difference between the given task performance results.

The comparison of results presented in figures 5.16 and 5.17 indicate that,
for all complex environments, there is a significant difference between the task
performance of teams evolved by CONE, and the task performance of teams
evolved by CONE-1, CONE-2, and CONE-3. That is, the teams evolved by the
CONE method yield a performance advantage over the CONE variants. This
result supports the research hypothesis (section 1.2) that both the GDM and
SDM are beneficial in terms of increasing task performance in CONE evolved
teams. Specifically, without either the GDM or SDM, the CONE evolved teams
lose their advantage of a significantly higher task performance. Furthermore, the
rover caste lesion study (section 5.5.3) supports the hypothesis that the GDM
and SDM enables CONE to derive a degree of behavioral specialization (in this
case, a set of complementary and interacting rover castes) that is appropriate
for achieving a higher task performance, comparative to related methods.



Appendix C: Statistical Comparisons in the Multi-Rover Task 189

Tab. C-26: Statistical Comparison of Red Rock Value Detected by Evolved Teams (by CONE
variants) in Complex Environments: Teams evolved by CONE without GDM,
SDM (or both). CONE: Team evolved by Multi-Agent Enforced Sub-Populations.
CONE-1: CONE evolved team (no GDM). CONE-2: CONE evolved team (no
SDM). CONE-3: CONE evolved team (no GDM and SDM).

Complex Environment

Team 1 2 3 4 5 6 7 8 9 10

CONE-1 vs
CONE

0.27 0.34 0.36 0.43 0.50 0.55 0.36 0.47 0.66 0.53

CONE-2 vs
CONE

0.17 0.25 0.22 0.32 0.46 0.35 0.29 0.11 0.16 0.23

CONE-3 vs
CONE

0.20 0.15 0.12 0.24 0.52 0.42 0.33 0.29 0.24 0.19

Tab. C-27: Statistical Comparison of Area Covered by Evolved Teams (by CONE variants)
in Complex Environments: Teams evolved by CONE without GDM, SDM (or
both). CONE: Team evolved by Multi-Agent Enforced Sub-Populations. CONE-
1: CONE evolved team (no GDM). CONE-2: CONE evolved team (no SDM).
CONE-3: CONE evolved team (no GDM and SDM).

Complex Environment

Team 1 2 3 4 5 6 7 8 9 10

CONE-1 vs
CONE

0.37 0.41 0.52 0.63 0.45 0.42 0.43 0.49 0.57 0.46

CONE-2 vs
CONE

0.26 0.15 0.12 0.15 0.16 0.50 0.32 0.40 0.36 0.55

CONE-3 vs
CONE

0.28 0.25 0.42 0.36 0.48 0.34 0.47 0.53 0.44 0.58



APPENDIX D: STATISTICAL COMPARISONS IN THE GACC
TASK

This appendix presents statistical comparisons of task performance results, an
analysis of these results, and of the behavioral compositions of evolved teams.

Behavioral Compositions of Evolved Teams

Tables D-1, D-2 D-3, D-4, and D-5 present, for each simple GACC environ-
ment, the behavioral composition of the fittest HomCNE, HetCNE, CCGA,
Multi-Agent ESP and CONE evolved teams, respectively. Behavioral composi-
tion refers to the composite number of robots in a team that are non-specialized
or specialized to activating object detection sensors or the gripper gripper with
a given setting (section 6.1.1). Tables D-6, D-7 D-8, D-9, and D-10 present,
for each complex GACC environment, the behavioral composition of the fittest
HomCNE, HetCNE, CCGA, Multi-Agent ESP and CONE evolved teams, re-
spectively. Behavioral composition refers to the composite number of robots in
a team that are non-specialized or specialized to activating its object detection
sensors or gripper (section 6.1.1).

Task Performances of Evolved Teams

An analysis of emergent team behaviors requires a statistical comparison of
task performance results (average number of atomic objects delivered in correct
order) yielded by HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE
evolved teams. The task performance of the fittest teams evolved in simple
and complex environment sets are presented in table D-11 and table D-13, re-
spectively. TableD-12 and table D-14 present the percentage of optimal task
performance achieved by the fittest teams evolved in the simple and complex
environments, respectively.

Comparing Task Performances of Teams Evolved in Simple versus
Complex Environments

A statistical comparison of task performance results yielded by teams evolved
by HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE in the simple
and complex environment sets, is conducted. A comparison is conducted be-
tween the average number of objects delivered in correct order by teams evolved



Appendix D: Statistical Comparisons in the GACC Task 191

Tab. D-1: Behavioral Compositions of Fittest Homogenous CNE Evolved Teams in Simple
Environments: For teams of 30 robots evolved by HomCNE in each of the simple
environments. O-A/O-B/O-C Detector: Robots specialized to detecting type A,
B, and C objects, respectively. O-A/O-B/O-C Gatherer: Robots specialized to
moving whilst gripping type A, B, and C objects, respectively. O-A/O-B/O-C
Constructor: Robots specialized to gripping and placing type A, B, and C objects
in the construction zone, respectively. Non-Specialized: Robots not specialized to
any behavior.

Simple Environment

Specialization 1 2 3 4 5 6 7 8 9

O-A Detector 0 0 0 0 0 0 0 0 0

O-B Detector 0 0 0 0 0 0 0 0 0

O-C Detector 0 0 0 0 0 0 0 0 0

O-A Gatherer 0 0 0 0 0 0 0 0 0

O-B Gatherer 0 0 0 0 0 0 0 0 0

O-C Gatherer 0 0 0 0 0 0 0 0 0

O-A Constructor 0 0 0 0 0 0 0 0 0

O-B Constructor 0 0 0 0 0 0 0 0 0

O-C Constructor 0 0 0 0 0 0 0 0 0

Non-Specialized 30 30 30 30 30 30 30 30 30

Tab. D-2: Behavioral Compositions of Fittest Heterogenous CNE Evolved Teams in Simple
Environments: For teams of 30 robots evolved by HetCNE in each of the simple
environments. O-A/O-B/O-C Detector: Robots specialized to detecting type A,
B, and C objects, respectively. O-A/O-B/O-C Gatherer: Robots specialized to
moving whilst gripping type A, B, and C objects, respectively. O-A/O-B/O-C
Constructor: Robots specialized to gripping and placing type A, B, and C objects
in the construction zone, respectively. Non-Specialized: Robots not specialized to
any behavior.

Simple Environment

Specialization 1 2 3 4 5 6 7 8 9

O-A Detector 0 0 0 0 0 0 0 0 0

O-B Detector 0 0 0 0 0 0 0 0 0

O-C Detector 0 0 0 0 0 0 0 0 0

O-A Gatherer 0 0 0 0 0 0 0 0 0

O-B Gatherer 0 0 0 0 0 0 0 0 0

O-C Gatherer 0 0 0 0 0 0 0 0 0

O-A Constructor 0 0 0 0 0 0 0 0 0

O-B Constructor 0 0 0 0 0 0 0 0 0

O-C Constructor 0 0 0 0 0 0 0 0 0

Non-Specialized 30 30 30 30 30 30 30 30 30



Appendix D: Statistical Comparisons in the GACC Task 192

Tab. D-3: Behavioral Compositions of Fittest CCGA Evolved Teams in Simple Environ-
ments: For teams of 30 robots evolved by CCGA in each of the simple environ-
ments. O-A/O-B/O-C Detector: Robots specialized to detecting type A, B, and
C objects, respectively. O-A/O-B/O-C Gatherer: Robots specialized to moving
whilst gripping type A, B, and C objects, respectively. O-A/O-B/O-C Construc-
tor: Robots specialized to gripping and placing type A, B, and C objects in the
construction zone, respectively. Non-Specialized: Robots not specialized to any
behavior.

Simple Environment

Specialization 1 2 3 4 5 6 7 8 9

O-A Detector 9 0 8 10 0 0 9 0 0

O-B Detector 0 8 0 0 8 0 0 8 0

O-C Detector 0 0 0 0 0 8 0 0 10

O-A Gatherer 14 0 0 9 0 0 13 0 0

O-B Gatherer 0 12 10 0 12 0 0 12 0

O-C Gatherer 0 0 0 0 0 11 0 0 9

O-A Constructor 4 0 5 6 0 0 4 0 0

O-B Constructor 0 5 0 0 4 0 0 3 0

O-C Constructor 0 0 0 0 0 5 0 0 4

Non-Specialized 3 5 7 5 6 6 4 5 7

Tab. D-4: Behavioral Compositions of Fittest MESP Evolved Teams in Simple Environ-
ments: For teams of 30 robots evolved by MESP in each of the simple environ-
ments. O-A/O-B/O-C Detector: Robots specialized to detecting type A, B, and
C objects, respectively. O-A/O-B/O-C Gatherer: Robots specialized to moving
whilst gripping type A, B, and C objects, respectively. O-A/O-B/O-C Construc-
tor: Robots specialized to gripping and placing type A, B, and C objects in the
construction zone, respectively. Non-Specialized: Robots not specialized to any
behavior.

Simple Environment

Specialization 1 2 3 4 5 6 7 8 9

O-A Detector 7 0 8 11 0 0 10 0 0

O-B Detector 0 9 0 0 9 0 0 10 0

O-C Detector 0 0 0 0 0 7 0 0 8

O-A Gatherer 13 0 0 10 0 0 11 0 0

O-B Gatherer 0 11 10 0 9 0 0 10 0

O-C Gatherer 0 0 0 0 0 10 0 0 12

O-A Constructor 5 0 6 4 0 0 5 0 0

O-B Constructor 0 4 0 0 5 0 0 4 0

O-C Constructor 0 0 0 0 0 5 0 0 5

Non-Specialized 5 6 6 5 7 8 4 6 5



Appendix D: Statistical Comparisons in the GACC Task 193

Tab. D-5: Behavioral Compositions of Fittest CONE Evolved Teams in Simple Environ-
ments: For teams of 30 robots evolved by CONE in each of the simple environ-
ments. O-A/O-B/O-C Detector: Robots specialized to detecting type A, B, and
C objects, respectively. O-A/O-B/O-C Gatherer: Robots specialized to moving
whilst gripping type A, B, and C objects, respectively. O-A/O-B/O-C Construc-
tor: Robots specialized to gripping and placing type A, B, and C objects in the
construction zone, respectively. Non-Specialized: Robots not specialized to any
behavior.

Simple Environment

Specialization 1 2 3 4 5 6 7 8 9

O-A Detector 9 0 9 10 0 0 10 0 0

O-B Detector 0 11 0 0 11 0 0 9 0

O-C Detector 0 0 0 0 0 10 0 0 7

O-A Gatherer 11 0 0 10 0 0 9 0 0

O-B Gatherer 0 8 9 0 11 0 0 11 0

O-C Gatherer 0 0 0 0 0 11 0 0 10

O-A Constructor 4 0 7 6 0 0 5 0 0

O-B Constructor 0 5 0 0 3 0 0 6 0

O-C Constructor 0 0 0 0 0 6 0 0 5

Non-Specialized 6 6 5 4 5 3 6 4 8

Tab. D-6: Behavioral Compositions of Fittest Homogenous CNE Evolved Teams in Complex
Environments: For teams of 30 robots evolved by HomCNE in each of the complex
environments. O-A/O-B/O-C Detector: Robots specialized to detecting type A,
B, and C objects, respectively. O-A/O-B/O-C Gatherer: Robots specialized to
moving whilst gripping type A, B, and C objects, respectively. O-A/O-B/O-C
Constructor: Robots specialized to gripping and placing type A, B, and C objects
in the construction zone, respectively. Non-Specialized: Robots not specialized to
any behavior.

Complex Environment

Specialization 1 2 3 4 5 6 7 8 9

O-A Detector 0 0 0 0 0 0 0 0 0

O-B Detector 0 0 0 0 0 0 0 0 0

O-C Detector 0 0 0 0 0 0 0 0 0

O-A Gatherer 0 0 0 0 0 0 0 0 0

O-B Gatherer 0 0 0 0 0 0 0 0 0

O-C Gatherer 0 0 0 0 0 0 0 0 0

O-A Constructor 0 0 0 0 0 0 0 0 0

O-B Constructor 0 0 0 0 0 0 0 0 0

O-C Constructor 0 0 0 0 0 0 0 0 0

Non-Specialized 30 30 30 30 30 30 30 30 30



Appendix D: Statistical Comparisons in the GACC Task 194

Tab. D-7: Behavioral Compositions of Fittest Heterogenous CNE Evolved Teams in Complex
Environments: For teams of 30 robots evolved by HetCNE in each of the complex
environments. O-A/O-B/O-C Detector: Robots specialized to detecting type A,
B, and C objects, respectively. O-A/O-B/O-C Gatherer: Robots specialized to
moving whilst gripping type A, B, and C objects, respectively. O-A/O-B/O-C
Constructor: Robots specialized to gripping and placing type A, B, and C objects
in the construction zone, respectively. Non-Specialized: Robots not specialized to
any behavior.

Complex Environment

Specialization 1 2 3 4 5 6 7 8 9

O-A Detector 0 0 0 0 0 0 0 0 0

O-B Detector 0 0 0 0 0 0 0 0 0

O-C Detector 0 0 0 0 0 0 0 0 0

O-A Gatherer 0 0 0 0 0 0 0 0 0

O-B Gatherer 0 0 0 0 0 0 0 0 0

O-C Gatherer 0 0 0 0 0 0 0 0 0

O-A Constructor 0 0 0 0 0 0 0 0 0

O-B Constructor 0 0 0 0 0 0 0 0 0

O-C Constructor 0 0 0 0 0 0 0 0 0

Non-Specialized 30 30 30 30 30 30 30 30 30

Tab. D-8: Behavioral Compositions of Fittest CCGA Evolved Teams in Complex Environ-
ments: For teams of 30 robots evolved by CCGA in each of the complex environ-
ments. O-A/O-B/O-C Detector: Robots specialized to detecting type A, B, and
C objects, respectively. O-A/O-B/O-C Gatherer: Robots specialized to moving
whilst gripping type A, B, and C objects, respectively. O-A/O-B/O-C Construc-
tor: Robots specialized to gripping and placing type A, B, and C objects in the
construction zone, respectively. Non-Specialized: Robots not specialized to any
behavior.

Complex Environment

Specialization 1 2 3 4 5 6 7 8 9

O-A Detector 0 0 1 4 5 4 4 5 4

O-B Detector 0 3 6 0 1 5 6 3 5

O-C Detector 8 3 0 5 3 1 0 2 1

O-A Gatherer 0 0 5 4 5 5 5 6 5

O-B Gatherer 0 6 6 0 1 6 7 5 7

O-C Gatherer 12 5 0 5 4 1 0 3 1

O-A Constructor 0 0 1 2 3 2 2 2 2

O-B Constructor 0 2 2 0 1 3 2 2 2

O-C Constructor 2 1 0 3 2 0 0 1 0

Non-Specialized 8 10 9 7 6 3 4 1 3



Appendix D: Statistical Comparisons in the GACC Task 195

Tab. D-9: Behavioral Compositions of Fittest MESP Evolved Teams in Complex Environ-
ments: For teams of 30 robots evolved by MESP in each of the complex environ-
ments. O-A/O-B/O-C Detector: Robots specialized to detecting type A, B, and
C objects, respectively. O-A/O-B/O-C Gatherer: Robots specialized to moving
whilst gripping type A, B, and C objects, respectively. O-A/O-B/O-C Construc-
tor: Robots specialized to gripping and placing type A, B, and C objects in the
construction zone, respectively. Non-Specialized: Robots not specialized to any
behavior.

Complex Environment

Specialization 1 2 3 4 5 6 7 8 9

O-A Detector 0 0 2 3 4 4 5 6 5

O-B Detector 0 3 7 0 1 5 5 4 5

O-C Detector 9 4 0 4 4 1 0 1 2

O-A Gatherer 0 0 6 4 5 6 5 6 5

O-B Gatherer 0 5 7 0 1 4 6 6 6

O-C Gatherer 10 7 0 6 5 1 0 2 2

O-A Constructor 0 0 1 3 3 2 2 2 2

O-B Constructor 0 2 1 0 2 3 3 1 2

O-C Constructor 2 1 0 3 1 0 0 1 1

Non-Specialized 9 8 6 7 4 4 4 1 0

Tab. D-10: Behavioral Compositions of Fittest CONE Evolved Teams in Complex Environ-
ments: For teams of 30 robots evolved by CONE in each of the complex environ-
ments. O-A/O-B/O-C Detector: Robots specialized to detecting type A, B, and
C objects, respectively. O-A/O-B/O-C Gatherer: Robots specialized to moving
whilst gripping type A, B, and C objects, respectively. O-A/O-B/O-C Construc-
tor: Robots specialized to gripping and placing type A, B, and C objects in the
construction zone, respectively. Non-Specialized: Robots not specialized to any
behavior.

Complex Environment Number

Specialization 1 2 3 4 5 6 7 8 9

O-A Detector 0 0 3 4 5 4 5 5 6

O-B Detector 0 4 6 0 2 3 4 5 5

O-C Detector 8 5 0 4 4 2 0 1 3

O-A Gatherer 0 0 5 5 4 6 6 4 6

O-B Gatherer 0 5 6 0 2 5 6 5 5

O-C Gatherer 8 5 0 7 4 2 0 3 2

O-A Constructor 0 0 1 2 2 2 2 2 1

O-B Constructor 0 2 1 0 2 1 2 2 1

O-C Constructor 3 2 0 2 2 0 0 2 1

Non-Specialized 11 7 8 6 3 5 5 1 0



Appendix D: Statistical Comparisons in the GACC Task 196

Tab. D-11: Number of Atomic Objects Delivered in Correct Order by Fittest Teams Evolved
in Simple Environments: For teams evolved by HomCNE, HetCNE, CCGA,
MESP and CONE. ENV: Environment Number.

ENV HomCNE HetCNE CCGA MESP CONE

1 3 4 4 5 5

2 4 2 5 4 4

3 4 5 4 6 6

4 14 13 14 12 14

5 12 11 15 13 15

6 14 13 13 15 14

7 18 17 19 18 20

8 19 20 18 21 18

9 16 19 15 19 17

Tab. D-12: Percentage of Optimal Performance Achieved by Fittest Teams Evolved in Simple
Environments: For teams evolved by HomCNE, HetCNE, CCGA, MESP and
CONE. ENV: Environment Number.

ENV HomCNE HetCNE CCGA MESP CONE

1 0.3 0.4 0.4 0.5 0.5

2 0.4 0.2 0.5 0.4 0.4

3 0.4 0.5 0.4 0.6 0.6

4 0.7 0.65 0.7 0.6 0.7

5 0.6 0.55 0.75 0.65 0.75

6 0.46 0.43 0.43 0.5 0.47

7 0.6 0.56 0.63 0.6 0.67

8 0.47 0.5 0.45 0.52 0.45

9 0.4 0.47 0.37 0.47 0.42

AVG 0.48 0.47 0.51 0.54 0.55



Appendix D: Statistical Comparisons in the GACC Task 197

Tab. D-13: Number of Atomic Objects Delivered in Correct Order by Fittest Teams Evolved
in Complex Environments: For teams evolved by HomCNE, HetCNE, CCGA,
MESP and CONE. ENV: Environment Number.

ENV HomCNE HetCNE CCGA MESP CONE

1 3 3 9 10 10

2 3 4 10 10 10

3 4 3 8 9 10

4 8 9 13 12 20

5 7 8 12 15 20

6 9 10 16 21 29

7 8 7 19 22 28

8 8 9 27 29 38

9 7 10 26 31 37

Tab. D-14: Percentage of Optimal Performance Achieved by Fittest Teams Evolved in Com-
plex Environments: For teams evolved by HomCNE, HetCNE, CCGA, MESP
and CONE. ENV: Environment Number. AVG: Average value calculated for all
environments.

ENV HomCNE HetCNE CCGA MESP CONE

1 0.3 0.3 0.9 1.0 1.0

2 0.3 0.4 1.0 1.0 1.0

3 0.4 0.3 0.8 0.9 1.0

4 0.4 0.45 0.65 0.6 1.0

5 0.35 0.4 0.6 0.75 1.0

6 0.3 0.33 0.53 0.7 0.96

7 0.26 0.23 0.63 0.73 0.93

8 0.2 0.22 0.67 0.725 0.95

9 0.17 0.25 0.65 0.775 0.925

AVG 0.29 0.32 0.71 0.79 0.93



Appendix D: Statistical Comparisons in the GACC Task 198

Tab. D-15: Statistical Comparison of Number of Objects Delivered in Correct Order (Com-
plex Objects Constructed) by Teams in Simple and Complex Environments: T-
test values for HomCNE, HetCNE, CCGA, MESP, and CONE evolved teams.
CNE: Conventional Neuro-Evolution. CCGA: Cooperative Co-evolutionary Ge-
netic Algorithm. MESP: Multi-Agent Enforced Sub-Populations. CONE: Col-
lective Neuro-Evolution.

Simple and Complex Environment

Method 1 2 3 4 5 6 7 8 9

HomCNE vs
HomCNE

0.47 0.48 0.27 0.39 0.44 0.35 0.48 0.25 0.16

HetCNE vs
HetCNE

0.30 0.26 0.22 0.18 0.21 0.11 0.37 0.41 0.19

CCGA vs
CCGA

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002

MESP vs
MESP

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003 0.0001

CONE vs
CONE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

with respective methods in the simple (figure 6.7) and complex (figure 6.8)
environment sets. The respective methods are HomCNE, HetCNE, CCGA,
Multi-Agent ESP, and CONE. Data sets representing results of the HomCNE,
HetCNE, CCGA, Multi-Agent ESP, and CONE evolved teams presented in fig-
ures 6.7, and 6.8, are found to conform to normal distributions via applying the
Kolmogorov-Smirnov test.

• For the HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE data
distributions represented in figure 6.7, the respective P values: [0.62, 0.70,
0.66, 0.63] are calculated.

• For the HomCNE, HetCNE, CCGA, Multi-Agent ESP, and CONE data
distributions represented in figure 6.8, the respective P values: [0.61, 0.65,
0.69, 0.62, 0.60] are calculated.

To determine if there is a statistically significant difference between task
performance results of teams evolved by respective methods, an independent
t-test is applied. The threshold for statistical significance is 0.05, and the null
hypothesis is that data sets do not significantly differ. Table D-15 presents
the P values for t-tests conducted between average task performances yielded
by teams evolved in the simple and complex environments. For table D-15, a
value of 0.0001 indicates that a value of less than 0.0001 is calculated by the
t-test. A value typed in italics indicates that the null hypothesis is rejected for
the given t-test, and that there is no significant difference between the given
task performance results. Values not in italics indicate that the null hypothesis
is accepted and that there is a significant difference between the given task
performance results.



Appendix D: Statistical Comparisons in the GACC Task 199

Tab. D-16: Statistical Comparison of Number of Atomic Objects Delivered in Correct Or-
der by Teams Evolved in Complex Environments: Results of teams evolved by
Collective Neuro-Evolution (CONE) versus other methods in the complex en-
vironments. HomCNE: Homogenous Conventional Neuro-Evolution. HetCNE:
Heterogeneous Conventional Neuro-Evolution. CCGA: Team evolved by Cooper-
ative Co-evolutionary Genetic Algorithm. MESP: Team evolved by Multi-Agent
Enforced Sub-Populations.

Complex Environment Number

Team 1 2 3 4 5 6 7 8 9

CONE vs
HomCNE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

CONE vs
HetCNE

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

CONE vs
CCGA

0.18 0.10 0.072 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

CONE vs
MESP

0.23 0.14 0.098 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Comparisons for Behavioral Validation

This section presents the results of statistical tests that compare the task per-
formances of teams constructed entirely from non-specialized or specialized con-
trollers, with task performances yielded by HomCNE, HetCNE, CCGA, Multi-
Agent ESP and CONE evolved teams (section 6.4.2). For clarity in describing
comparisons, the non-specialized, object-A, object-B, and object-C detector and
gatherer teams (section 6.5.5) are referred to as cloned GACC teams, and teams
evolved by HomCNE, HetCNE, CCGA, Multi-Agent ESP and CONE (section
6.4.2) are referred to as evolved GACC teams. The task performances attained
by each of the cloned teams are detailed in the following.

• Object-A Detector Teams: The task performance achieved by object-A
detector teams is presented in figure D-1.

• Object-B Detector Teams: The task performance achieved by object-B
detector teams is presented in figure D-1.

• Object-C Detector Teams: The task performance achieved by object-C
detector teams is presented in figure D-1.

• Object-A Gatherer Teams: The task performance achieved by object-A
gatherer teams is presented in figure D-2.

• Object-B Gatherer Teams: The task performance achieved by object-B
gatherer teams is presented in figure D-2.

• Object-C Gatherer Teams: The task performance achieved by object-C
gatherer teams is presented in figure D-2.



Appendix D: Statistical Comparisons in the GACC Task 200

• Object-A Constructor Teams: The task performance achieved by object-A
gatherer teams is presented in figure D-3.

• Object-B Constructor Teams: The task performance achieved by object-B
gatherer teams is presented in figure D-3.

• Object-C Constructor Teams: The task performance achieved by object-C
gatherer teams is presented in figure D-3.

• Non-Specialized Teams: For the purposes of comparison with homoge-
neous teams of detectors, gatherers and constructors, the task performance
of non-specialized teams is presented in figures D-1, D-2, and D-3.

Data sets representing results of the cloned teams are found to conform to
normal distributions via applying the Kolmogorov-Smirnov test.

• For non-specialized teams, P = [0.85] is calculated for the task performance
result distributions.

• For object-A, object-B, object-C detector teams, P = [0.66, 0.75, 0.58] is
calculated for the task performance result distributions, respectively.

• For object-A, object-B, object-C gatherer teams, P = [0.77, 0.69, 0.68] is
calculated for the task performance result distributions, respectively.

• For object-A, object-B, object-C constructor teams, P = [0.80, 0.59, 0.57]
is calculated for the task performance result distributions, respectively.

To determine if there is a statistically significant difference between task
performance results of cloned and evolved teams, an independent t-test [48] is
applied. The threshold for statistical significance is 0.05, and the null hypothesis
is that data sets do not significantly differ. The results of statistical task per-
formance comparisons between cloned and evolved GACC teams are presented
in table D-17. A value of 0.0001 indicates that a value of less than 0.0001 is
calculated by the t-test. A value typed in italics indicates that the null hypoth-
esis is rejected for the given t-test, and that there is no significant difference
between the given task performance results. Values not in italics indicate that
the null hypothesis is accepted and that there is a significant difference between
the given task performance results.

Caste Lesion Study

In order to investigate the role of emergent behavioral specialization in teams
evolved by HomCNE, HetCNE, CCGA, MESP, and CONE, a caste lesion study
is conducted. The caste lesion study operates via removing sets of controllers
specialized to a given behavior or non-specialized controllers. The behaviors
performed by these controllers are then replaced with behaviors yielded by hard-
wired heuristic controllers. The task performance of the lesioned team is then



Appendix D: Statistical Comparisons in the GACC Task 201

Tab. D-17: Statistical Comparison of Objects delivered in Correct Order by Cloned/Evolved
Teams in Complex Environments. Evolved teams: HomCNE: Homogenous Con-
ventional Neuro-Evolution. HetCNE: Heterogeneous Conventional Neuro-Evolution.
CCGA: Cooperative Co-evolutionary Genetic Algorithm. MESP: Multi-Agent En-
forced Sub-Populations. CONE: Collective Neuro-Evolution. Cloned teams: AD:
Object-A Detector Team. BD: Object-B Detector Team. CD: Object-C Detector
Team. AG: Object-A Gatherer Team. BG: Object-B Gatherer Team. CG: Object-C
Gatherer Team. AC: Object-A Constructor Team. BC: Object-B Constructor Team.
CC: Object-C Constructor Team. NS: Non-Specialized Team.

Complex Environment Number
Team 1 2 3 4 5 6 7 8 9

AD vs HomCNE 0.0001 0.0047 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
AD vs HetCNE 0.0001 0.0001 0.0001 0.0011 0.0001 0.0001 0.0001 0.0001 0.0001
AD vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
AD vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

AD vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
BD vs HomCNE 0.0001 0.0003 0.0001 0.0001 0.0001 0.0026 0.0001 0.0001 0.0001
BD vs HetCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0015 0.0001 0.0001 0.0001
BD vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
BD vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BD vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CD vs HomCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CD vs HetCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CD vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CD vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0025

CD vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
AG vs HomCNE 0.0001 0.0043 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
AG vs HetCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
AG vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
AG vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

AG vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
BG vs HomCNE 0.0001 0.0001 0.0067 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001
BG vs HetCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
BG vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
BG vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BG vs CONE 0.0006 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CG vs HomCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CG vs HetCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CG vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002
CG vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

CG vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
AC vs HomCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
AC vs HetCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
AC vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
AC vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

AC vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
BC vs HomCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0026 0.0001 0.0001 0.0001
BC vs HetCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0026 0.0001 0.0001 0.0003
BC vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
BC vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BC vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CC vs HomCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CC vs HetCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
CC vs CCGA 0.0001 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0069
CC vs MESP 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0005

CC vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0012
NS vs HomCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
NS vs HetCNE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
NS vs CCGA 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
NS vs MESP 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

NS vs CONE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001



Appendix D: Statistical Comparisons in the GACC Task 202

Fig. D-1: Average Number of Objects Delivered in Correct Order by Teams of Clones in
the Complex Environment Set. Teams are constructed that consist entirely of an
(evolved) non-specialized or specialized controller. Here, the specialized controller
is a specialized detector behavior.

Fig. D-2: Average Number of Objects Delivered in Correct Order by Teams of Clones in
the Complex Environment Set. Teams are constructed that consist entirely of an
(evolved) non-specialized or specialized controller. Here, the specialized controller
is a specialized gatherer behavior.



Appendix D: Statistical Comparisons in the GACC Task 203

Fig. D-3: Average Number of Objects Delivered in Correct Order by Teams of Clones in
the Complex Environment Set. Teams are constructed that consist entirely of an
(evolved) non-specialized or specialized controller. Here, the specialized controller
is a specialized construction behavior.

re-evaluated. The goal of the caste lesion study is to ascertain the contribu-
tion of specialized and non-specialized castes to the overall task performance of
the fittest teams. For each of the fittest teams evolved by HomCNE, HetCNE,
CCGA, Multi-Agent ESP, and CONE the specialized and non-specialized castes
are systematically removed and replaced with heuristic controllers that imple-
ment a hard-wired specialized or non-specialized behavior (section 6.2.8). Each
lesioned team is then executed in 20 new experimental runs for each complex
environment, and an average task performance is calculated for each run.

Procedure for lesioning fittest teams: The following procedure is used for each
of the fittest teams evolved by each NE method in the complex environments. It
is important to note that for each of the fittest teams evolved by each method,
castes are removed and then re-evaluated in the environments in which they
were evolved. Thus castes within a fittest team are often re-evaluated in a
subset of the complex environment set.

• Fittest Teams Evolved by HomCNE: In environments [1, 9] (table D-6) all
30 non-specialized robots are replaced with 30 robots using non-specialized
heuristic controllers (table 6.3). These lesioned teams are then executed
in environments [1, 9].

• Fittest Teams Evolved by HetCNE: In environments [1, 9] (table D-7) all
30 non-specialized robots are replaced with 30 robots using non-specialized
heuristic controllers (table 6.3). These lesioned teams are then executed



Appendix D: Statistical Comparisons in the GACC Task 204

in environments [1, 9].

• Fittest Teams Evolved by CCGA:

– In environments [3, 9] (table D-8), the O-A Detector caste is replaced
with robots using Object A Detector heuristic controllers (table 6.3).
Lesioned teams are then executed in environments [3, 9].

– In environments [2, 3, 5, 6, 7, 8, 9] (table D-8), theO-B Detector caste
is replaced with robots using Object B Detector heuristic controllers
(table 6.3). These lesioned teams are then executed in environments
[2, 3, 5, 6, 7, 8, 9].

– In environments [1, 2, 4, 5, 6, 8, 9] (table D-8), theO-C Detector caste
is replaced with robots using Object C Detector heuristic controllers
(table 6.3). These lesioned teams are then executed in environments
[1, 2, 4, 5, 6, 8, 9].

– In environments [3, 4, 5, 6, 7, 8, 9] (table D-8), the O-A Gath-
erer caste is replaced with robots using Object A Gatherer heuristic
controllers (table 6.3). These lesioned teams are then executed in
environments [3, 4, 5, 6, 7, 8, 9].

– In environments [2, 3, 5, 6, 7, 8, 9] (table D-8), the O-B Gatherer
caste is replaced with robots using Object B Gatherer heuristic con-
trollers (table 6.3). These lesioned teams are then executed in envi-
ronments [3, 4, 5, 6, 7, 8, 9].

– In environments [1, 2, 4, 5, 6, 8, 9] (table D-8), the O-C Gatherer
caste is replaced with robots using Object C Gatherer heuristic con-
trollers (table 6.3). These lesioned teams are then executed in envi-
ronments [1, 2, 4, 5, 6, 8, 9].

– In environments [3, 9] (table D-8), the O-A Constructor caste is
replaced with robots using Object A Constructor heuristic controllers
(table 6.3). Lesioned teams are then executed in environments [3, 9].

– In environments [2, 3, 5, 6, 7, 8, 9] (table D-8), the O-B Constructor
caste is replaced with robots using Object B Constructor heuristic
controllers (table 6.3). These lesioned teams are then executed in
environments [2, 3, 5, 6, 7, 8, 9].

– In environments [1, 2, 4, 5, 8, 9] (table D-8), the O-C Constructor
caste is replaced with robots using Object C Constructor heuristic
controllers (table 6.3). These lesioned teams are then executed in
environments [1, 2, 4, 5, 8, 9].

– In environments [1, 9], the non-specialized caste is replaced with
robots using non-specialized heuristic controllers (table 6.3). These
lesioned teams are then executed in environments [1, 9].

• Fittest Teams Evolved by Multi-Agent ESP:



Appendix D: Statistical Comparisons in the GACC Task 205

– In environments [3, 9] (table D-9) the O-A Detector caste is replaced
with robots using Object A Detector heuristic controllers (table 6.3).
These lesioned teams are then executed in environments [3, 9].

– In environments [2, 3, 5, 6, 7, 8, 9] (table D-9) the O-B Detector caste
is replaced with robots using Object B Detector heuristic controllers
(table 6.3). These lesioned teams are then executed in environments
[2, 3, 5, 6, 7, 8, 9].

– In environments [1, 2, 4, 5, 6, 8, 9] (table D-9) the O-C Detector caste
is replaced with robots using Object C Detector heuristic controllers
(table 6.3). These lesioned teams are then executed in environments
[1, 2, 4, 5, 6, 8, 9].

– In environments [3, 9] (table D-9) the O-A Gatherer caste is replaced
with robots using Object A Gatherer heuristic controllers (table 6.3).
These lesioned teams are then executed in environments [3, 9].

– In environments [2, 3, 5, 6, 7, 8, 9] (table D-9) the O-B Gatherer caste
is replaced with robots using Object B Gatherer heuristic controllers
(table 6.3). These lesioned teams are then executed in environments
[2, 3, 5, 6, 7, 8, 9].

– In environments [1, 2, 4, 5, 6, 8, 9] (table D-9) the O-C Gatherer caste
is replaced with robots using Object C Gatherer heuristic controllers
(table 6.3). These lesioned teams are then executed in environments
[1, 2, 4, 5, 6, 8, 9].

– In environments [3, 9] (table D-9) the O-A Constructor caste is re-
placed with robots using Object A Constructor heuristic controllers
(table 6.3). Lesioned teams are then executed in environments [3, 9].

– In environments [2, 3, 5, 6, 7, 8, 9] (table D-9) the O-B Constructor
caste is replaced with robots using Object B Constructor heuristic
controllers (table 6.3). These lesioned teams are then executed in
environments [2, 3, 5, 6, 7, 8, 9].

– In environments [1, 2, 4, 5, 8, 9] (table D-9) the O-C Constructor
caste is replaced with robots using Object C Constructor heuristic
controllers (table 6.3). These lesioned teams are then executed in
environments [1, 2, 4, 5, 8, 9].

– For environments [1, 8], the non-specialized caste is replaced with
robots using non-specialized heuristic controllers (table 6.3). These
lesioned teams are then executed in environments [1, 8].

• Fittest Teams Evolved by CONE:

– In environments [3, 8] (table D-10), the O-A Detector caste is re-
placed with robots using Object A Detector heuristic controllers (ta-
ble 6.3). Lesioned teams are then executed in environments [3, 8].



Appendix D: Statistical Comparisons in the GACC Task 206

– In environments [2, 3, 5, 6, 7, 8, 9] (table D-10), the O-B Detec-
tor caste is replaced with robots using Object B Detector heuristic
controllers (table 6.3). These lesioned teams are then executed in
environments [2, 3, 5, 6, 7, 8, 9].

– In environments [1, 2, 4, 5, 6, 8, 9] (table D-10), the O-C Detec-
tor caste is replaced with robots using Object C Detector heuristic
controllers (table 6.3). These lesioned teams are then executed in
environments [1, 2, 4, 5, 6, 8, 9].

– In environments [3, 9] (table D-10), the O-A Gatherer caste is re-
placed with robots using Object A Gatherer heuristic controllers (ta-
ble 6.3). Lesioned teams are then executed in environments [3, 9].

– In environments [2, 3, 5, 6, 7, 8, 9] (table D-10), the O-B Gath-
erer caste is replaced with robots using Object B Gatherer heuristic
controllers (table 6.3). These lesioned teams are then executed in
environments [2, 3, 5, 6, 7, 8, 9].

– In environments [1, 2, 4, 5, 6, 8, 9] (table D-10), the O-C Gath-
erer caste is replaced with robots using Object C Gatherer heuristic
controllers (table 6.3). These lesioned teams are then executed in
environments [1, 2, 4, 5, 6, 8, 9].

– In environments [3, 9] (table D-10), the O-A Constructor caste is
replaced with robots using Object A Constructor heuristic controllers
(table 6.3). Lesioned teams are then executed in environments [3, 9].

– In environments [2, 3, 5, 6, 7, 8, 9] (table D-10), the O-B Constructor
caste is replaced with robots using Object B Constructor heuristic
controllers (table 6.3). These lesioned teams are then executed in
environments [2, 3, 5, 6, 7, 8, 9].

– In environments [1, 2, 4, 5, 8, 9] (table D-10), the O-C Constructor
caste is replaced with robots using Object C Constructor heuristic
controllers (table 6.3). These lesioned teams are then executed in
environments [1, 2, 4, 5, 8, 9].

– In environments [1, 8], the evolved non-specialized caste is replaced
with robots using non-specialized heuristic controllers (table 6.3).
These lesioned teams are then executed in environments [1, 8].

The Role of Difference Metrics in CONE

This section examines the role of the Genotype Difference Metric (GDM), and
Specialization Difference Metric (SDM) for facilitating behavioral specializa-
tion, and increasing task performance in CONE evolved teams. As part of this
analysis, CONE is executed with the following three experimental variations.

1. CONE without GDM (CONE-1 in table D-18): Teams are evolved using
CONE without the GDM, so genotype recombination only occurs within



Appendix D: Statistical Comparisons in the GACC Task 207

Tab. D-18: Statistical Comparison of Number of Atomic Objects Delivered in Correct Or-
der by Teams Evolved (by CONE variants) in Complex Environments: Re-
sults of teams evolved by Collective Neuro-Evolution (CONE) without the GDM
(Genotype Difference Metric), SDM (Specialization Difference Metric), GDM
and SDM. CCGA: Team evolved by Cooperative Co-evolutionary Genetic Algo-
rithm. MESP: Team evolved by Multi-Agent Enforced Sub-Populations. CONE-
1: Team evolved by CONE without GDM. CONE-2: Team evolved by CONE
without SDM. CONE-3: Team evolved by CONE without GDM and SDM.

Complex Environment Number

Team 1 2 3 4 5 6 7 8 9

CONE-1 vs
CONE

0.27 0.24 0.32 0.23 0.29 0.15 0.26 0.17 0.22

CONE-2 vs
CONE

0.17 0.25 0.22 0.22 0.26 0.068 0.10 0.10 0.21

CONE-3 vs
CONE

0.098 0.15 0.12 0.24 0.22 0.072 0.093 0.12 0.26

sub-populations of a given population. The SDM for inter-population
genotype recombination remains active.

2. CONE without SDM (CONE-2 in table D-18): Teams are evolved using
CONE without the SDM. The GDM remains active.

3. CONE without GDM and SDM (CONE-3 in table D-18): Teams are
evolved using CONE without both the GDM and SDM.

Figure 6.9 presents the average task performance of teams evolved using
CONE, without the GDM, SDM, and both the GDM and SDM, for all complex
environments. These task performance results are averaged over 20 experimental
runs for each variation of the CONE setup and each environment. For compari-
son, results previously attained by CONE (original experimental setup) evolved
teams are also presented in figure 6.9. To determine if there is a statistically
significant difference between task performance results of HomCNE, HetCNE,
CCGA, Multi-Agent ESP and CONE evolved teams, and teams evolved us-
ing each variation of the CONE experimental setup (without SDM, GDM or
both SDM and GDM), an independent t-test [48] is applied. The threshold for
statistical significance is 0.05, and the null hypothesis is that data sets do not
significantly differ. Data sets representing results of teams evolved using CONE-
1, CONE-2, and CONE-3, were found to conform to normal distributions via
applying the Kolmogorov-Smirnov test [48].

• For the HomCNE, HetCNE, CCGA, ESP, and CONE data distributions,
P = [0.80, 0.77, 0.78] is calculated, respectively.

The P values resulting from a statistical comparison of the average task per-
formances are presented in table D-18. A value of 0.0001 indicates that a value
of less than 0.0001 is calculated by the t-test. A value typed in italics indicates



Appendix D: Statistical Comparisons in the GACC Task 208

that the null hypothesis is rejected for the given t-test, and that there is no
significant difference between the given task performance results. Values not in
italics indicate that the null hypothesis is accepted and that there is a signif-
icant difference between the given task performance results. The comparison
of results indicates that, for all complex environments, the task performance
of teams evolved by the variations of CONE (CONE-1: without the GDM,
CONE-2: SDM, and CONE-3: without both GDM and SDM), is significant
lower comparative to the task performance yielded by CONE (original setup)
evolved teams. This result indicates that both the GDM and SDM are beneficial
for the purpose of increasing the task performance of teams evolved by CONE
in each of the complex environments.



APPENDIX E: EXPERIMENTS AND NEURO-EVOLUTION
PARAMETERS

This appendix describes parameters specific to the Collective Neuro-Evolution
(CONE) method, and the simulation environments used to implement the pursuit-
evasion, multi-rover, and gathering and collective construction case studies. The
task environments and methods compared in this dissertation were implemented
using the open-source Neuro-Evolution Simulation Toolkit (NEST) based on the
platform-independent Java programming language. NEST is largely based upon
the Multi-Agent Simulation (MASON) toolkit [92], and includes a 2D physics
engine for collision handling. Source code, libraries, and documentation used
for the experiments can be found at:

http://gforge.cs.vu.nl/projects/nest/

Computer systems used for the experiments were the 72-node Intel Pentium-
III Distributed ASCI Supercomputer 2 (DAS-2) cluster at the Vrije Univer-
siteit’s Computer Science department, the 20 node 2.0 Gigahertz AMDNEWTIES
cluster at the Vrije Universiteit’s Computer Science department, and the 30
node 3.2 Gigahertz AMD Hydra2 cluster at George Mason University’s Com-
puter Science department. Each node used 2 Gigabytes of RAM.

The parameter settings used depended upon the collective behavior case
study. CONE parameter values specific to each case study are described in
chapters 4, 5 and 6. For each collective behavior case study, appropriate pa-
rameter values were found experimentally, and via extensive experimentation,
moderate changes to these parameter values were found to yield minimal vari-
ations in collective behavior task performance.

1. Iterations per epoch (lifetime): The number of simulation iterations that
each epoch consists of. At the end of a lifetime for a given agent, the agent
begins a new epoch.

2. Crossover (Recombination): For consistency, single-point crossover [43] is
applied in all experiments.

3. Epochs: The number of task scenarios that each generation consists of.
Each epoch tests different agent and environment parameter values, such
as different agent starting positions, orientations, and distributions of en-
vironmental resources.

4. Fitness Stagnation V: If the fitness of at least one of the fittest n con-
trollers has not progressed in V generations, then adapt the the Special-



Appendix E: Experiments and Neuro-Evolution Parameters 210

ization Similarity Threshold (SST) value. Section 3.5 presents a complete
description of the method used to adapt the SST value.

5. Fitness Stagnation W: If the fitness of at least one of the fittest n con-
trollers has not progressed in V + W generations, then adapt the the
Genetic Similarity Threshold (GST) value. Section 3.5 presents a com-
plete description of the method used to adapt the GST value.

6. Fitness Stagnation Y: If fitness of at least one of the n controllers has
not progressed in V + W + Y generations, then the number of sub-
populations (controller size) for each of the controllers with stagnating
fitness, is adapted. Section 3.6 comprehensively describes the method
used to adapt controller size.

7. Generations: Number of generations of a neuro-evolution process.

8. Genotype Distance (GD) Value: A normalized value within the range [0.0,
1.0], that corresponds to the Genetic Distance between two genotypes ga
and gb. Calculation of the GD value is described in section 3.1.2.

9. Genotype Representation: The encoding of any given ANN controller.
Each genotype is represented as a floating point value vector and is direct
one-to-one encoding of an ANN controller. That is, the value of each
sensory input weight connecting each input neuron to each hidden layer
neuron, plus the value of each motor output weight connecting each output
neuron to each hidden layer neuron. Within each genotype, each gene
represents a single connection weight.

10. Hidden Layer Neurons: The number of hidden layer neurons assigned to
any given ANN controller, and thus the number of sub-populations within
a genotype population, from which the ANN controller is derived. The
number of hidden layer neurons is determined by the experimenter a priori,
where the appropriate number is task dependent, and is determined via a
set of exploratory experiments. The number of hidden layer neurons (and
hence the number of sub-populations) is adapted over the course of the
CONE evolutionary process as a function of fitness progress.

11. Input Neurons: The number of sensory input neurons assigned to any
given ANN controller. The number of sensory input neurons is deter-
mined by the experimenter a priori, where the appropriate number is task
dependent. The number of sensory input neurons remains static for any
given NE experiment, and determines genotype length.

12. Mutation probability: The degree of probability per gene in a given geno-
type, that the gene is mutated within a given range. Within any given
genotype, each gene represents a ANN controller connection weight.

13. Mutation Type: For consistency, burst mutation with a Cauchy distribu-
tion [57] is applied in all experiments.



Appendix E: Experiments and Neuro-Evolution Parameters 211

14. Output Neurons: The number of motor output neurons assigned to any
given ANN controller. The number of motor output neurons is determined
by the experimenter a priori, where the appropriate number is task depen-
dent. The number of motor output neurons remains static for any given
NE experiment, and determines genotype length.

15. Population Elite Portion: A fittest portion of each genotype population.
This portion is a part of the genotype selection process for the HomCNE,
HetCNE, CCGA, Multi-Agent ESP and CONE methods.

16. Population Size: The number of genotypes (ANN controllers) in a given
population, where there are initially n populations.

17. Specialization Distance (SD) Value: A normalized value within the range
[0.0, 1.0] that corresponds to the difference in behavioral specialization
exhibited by two controllers: ANNi and ANNj . Calculation of the SD
value is described in section 3.2.2.

18. Weight Mutation Range: The range of change in the value of an ANN
controller weight connection effectuated by the mutation operator.

19. Weight (Gene) Range: The range of the value of each connection weight
(gene) in any given ANN controller.



APPENDIX F: PREDATOR HEURISTIC CONTROLLER

In the shaping experiments for prey controller evolution, predators use heuristic
controllers. A heuristic predator controller mandates that a predator’s move-
ment be deterministic when a prey is within light sensor range, and that move-
ment be stochastic when a prey is beyond light sensor range. That is:

if ≥ 1 prey within light sensor range
then Execute deterministic movement
else Execute stochastic movement

Deterministic movement: uses the max norm greedy heuristic [82] as a
method for selecting the direction of movement (an orientation between 0 and
360 degrees) that places a predator on a heading towards the prey. The greedy
max norm heuristic measures the diagonal difference between a predator and a
prey, and works via minimizing the distance between each of the predators, as
well as each of the predators and a prey.

Stochastic movement moves a predator in the direction of a prey’s last posi-
tion (when last in light sensor range) 60% of the time, and in a random direction
30% of the time. No movement is made 10% of the time.



NOMENCLATURE

Activity: What is being done by one controller or a set of controllers [83].

Agent: Anything that can be viewed as perceiving its environment through sen-
sors and acting upon that environment through effectors [147].

Artificial collective behavior system: Systems where simulated (software) or phys-
ically embodied (robot) controllers interact in a common task environment
in order to solve a collective behavior task.

Artificial Neural Network (ANN): In line with definitions adopted by evolution-
ary robotics researchers such as Nolfi and Floreano [124], ANN refers to
a controller that maps sensory inputs to motor outputs as a function of
a process that replicates the neural computation properties of biological
neural networks [70].

Atomic Object: A term that is specific to the GACC task (chapter 6). The term
atomic object is used interchangeably with object, and refers to a building
block of a complex object. In the GACC task, a set of atomic objects
delivered to a construction in a specific order constitutes the construction
of a complex object.

Behavioral specialization: The predisposition for a controller to adopt a specific
behavior, where this behavior is advantageous to task accomplishment.
Behavioral specialization is applicable to both simulated and embodied
controllers.

Biological collective behavior system: A natural system of organisms co-inhabiting
an environment found in nature, where organisms interact at a local level
with the result of exhibiting a global behavior at the system level. Exam-
ples of biological collective behavior systems include complex ecological
communities such as social insect colonies [19], biological neural networks
[9], multi-cellular organisms [66], economies of a nation, companies, cor-
porations and other business organizations [1].

Caste: A set of controllers specialized to the same role [83].

Collective behavior: A global behavior that is derived via the local interactions
between individual controllers situated in a common collective behavior
task environment [111].



Nomenclature 214

Collective behavior system: Either an artificial or biological collective behavior
system [111].

Collective behavior task environment: A simulated or physical environment in
which a set of simulated or embodied controllers operate with the goal of
accomplishing a collective behavior task [111].

Collective behavior task: A task that is accomplished by a collective behavior,
and could not otherwise be accomplished by any of the individuals oper-
ating in a collective behavior system [111].

Collective Neuro-Evolution (CONE): CONE is a principled method for auto-
mated controller design in collective behavior systems. CONE is the main
contribution of this book and is described in chapter 3.

Complex adaptive system: Either biological or artificial systems, where the con-
stituent components of the system interact at a local level so as to produce
a global system level behavior [113].

Complex Object: A term that is specific to the GACC task (chapter 6). A com-
plex object refers to a structure that is constructed from a set of atomic
objects. In the context of the GACC task, a complex object is metaphori-
cal, and represents a physical structure situated in hazardous or uninhab-
itable environments that would most appropriately be constructed by a
robot team. Examples of real world complex objects include underwater
laboratories and space stations.

Controller: A simulated (software) or embodied (robotic) entity designed to
operate in a given environment and perform a given task. Simulated
controllers are labeled as such since they operate within the confines of
computer simulation. However, embodied controllers operate in a physical
(real world) environment [124].

Conventional Neuro-Evolution (CNE): CNE is an approach that evolves ANN
controllers, where a single population of genotypes is specified. Each geno-
type encodes all the connection weights of one ANN controller [195]. For
the purposes of experiments reported in this book, CNE is divided into two
methods. First, Homogenous Conventional Neuro-Evolution (HomCNE),
and second, Heterogenous Conventional Neuro-Evolution (HetCNE). For
the creation of a team of n ANN controllers, the mechanism used to select
genotypes from the population differs between HomCNE and HetCNE.
HomCNE selects one of the fittest genotypes from the population, de-
codes it into an ANN controller, and then clones the controller n times
in order to construct a team. HetCNE selects n of the fittest genotypes
from the population, and decodes them into a set of n controllers. These
methods are described in section 2.3.1.

Cooperative Co-evolution: In terms of evolutionary computation research, co-
operative co-evolution is an artificial evolution process that evaluates an



Nomenclature 215

individual based on how well the individual cooperates with the other
individuals in the task environment. Individuals succeed when they are
able to effectively complement the behaviors of other individuals, and all
individuals accomplish a given task [187].

Cooperative Co-evolutionary Genetic Algorithm (CCGA): The Cooperative Co-
evolutionary Genetic Algorithm is one instantiation of a generalized co-
operative co-evolution architecture proposed by Potter [136]. This coop-
erative co-evolution architecture uses multiple populations. Phenotypes
from each population are decoded and evaluated together in a common
task environment. In CCGA, genetic algorithms are used as a means of
adapting genotypes in each population [136].

Epoch: A task trial executed for a given number of simulation iterations. Each
epoch is initialized with different agent and environment conditions, such
as agent positions and orientations, and resource locations. A given num-
ber of epochs represents one agent lifetime, which is equated with one
generation in terms of an evolutionary algorithm [124].

Emergent behavior: Emergent behavior is considered to be any computation
that achieves global affects, formally or stochastically, via working within
a bounded number of neighbors and without global visibility [47].

Emergent specialization: Is specialization (either behavioral or morphological)
that is derived as result of collective behavior system dynamics or in re-
sponse to task and environment constraints [113].

Evaluation: In terms of evolutionary computation theory, this is the testing of
a candidate solution in order to determine its fitness [35].

Enforced Sub-Populations (ESP): ESP is a cooperative co-evolutionary NEmethod.
ESP creates and evolves p genotype populations for an ANN consisting
of a single hidden layer of p neurons. For a given population, individual
genotypes in the population encode the input-output weights of a neuron
assigned to a given hidden layer position. Each generation of the evo-
lutionary process, genotypes selected from each population are decoded
into hidden layer neurons and evaluated together in the context of an
ANN. Genotypes are assigned a fitness and recombined as a function of
the performance of their corresponding neurons in the ANN [56].

Functional specialization: A specific function of an individual neuron operating
within an ANN.

Gathering and Collective Construction (GACC) task: A collective behavior case
study detailed in chapter 6. In the GACC task, it is the goal of a robot
team to maximize the number of complex objects constructed during the
team’s lifetime.



Nomenclature 216

Island Model: A parallel implementation of a genetic algorithm within a com-
munication structure. The island model uses a fixed number of genotype
populations (so called islands) which evolve competing solutions. Individ-
ual genotypes occasionally migrate from one island to another, so as to
induce a gradual mixing of genetic material [43].

Individual: In terms of evolutionary computation, a member of the population
of candidate solutions upon which evolutionary algorithms operate [43].

Lamarckian Evolution (Lamarckism): Where characteristics learn’t or acquired
during one’s lifetime are genetically encoded and passed onto to one’s
offspring [61]. In the context of neuro-evolution, controllers that exploit
Lamarckism are those where connection weights adapted due to a lifetime
learning process are passed onto the next generation of controllers and
thus propagated throughout the evolutionary process [60].

Lifetime: An agent (controller) lifetime lasts for q epochs, where each epoch
consists of a number of simulation iterations [124].

Morphological specialization: A particular configuration or structure of an em-
bodied entity, where such a structure is advantageous in terms of the
controller behavior that it defines and influences [113].

Multi-Agent Enforced Sub-Populations (Multi-Agent ESP): Multi-
Agent ESP is the application of ESP to collective behavior tasks [197].
Multi-Agent ESP creates n populations for evolving n ANN controllers.
Each population consists of u sub-populations, where individual ANNs
are constructed as in ESP. This process is repeated n times for n ANNs,
which are then collectively evaluated in a task environment.

Multi-Rover task: A collective behavior task investigated as one of the case stud-
ies in this book. A team of simulated autonomous vehicles (rovers) op-
erating in an unexplored environment attempt to maximize the value of
features of interest (red rocks) detected over the course of the team’s life-
time. The multi-rover task is described in chapter 5.

Neuro-Evolution (NE): The adaptation of ANN properties such as architecture,
connection weights, and learning rate via the use of an evolutionary algo-
rithm [194].

Ontogenetic adaptation: Adaptation due to a learning process [39].

Phylogenetic adaptation: Adaptation due to an evolutionary process [39].

Pursuit-evasion task: One of the collective behavior case studies investigated
in this book. Multiple pursuers (predators) are required to interact co-
operatively so as to capture (immobilize) one or more evaders (prey).
Pursuit-evasion is commonly used within artificial life research to test
both non-adaptive (typically game theoretic [87]) and adaptive (typically
learning and evolution [68]) methods for controller design.



Nomenclature 217

Red rock: A term that is specific to the multi-rover task (chapter 5). The term
red rock is adapted from that introduced by Young et al. [199] and refers
to discrete high-value features of interest on an unexplored terrain.

Role: The task assigned to an individual controller within a set of tasks given
to a group of controllers [83].

Singularity: In mathematical terms, a point at which the derivative does not
exist for a given function but every neighborhood of which contains points
for which the derivative exists [81].

Species: In the context of evolutionary computation, species refers to a popula-
tion of genotypes. The term species is applicable to the ESP, Multi-Agent
ESP, and CCGA methods, since genotype recombination does not occur
between populations [138].

Symbiotic Adaptive Neuro-Evolution (SANE): A cooperative co-
evolutionary NE method. SANE uses a single genotype population which
evolves an ANN. Individual genotypes are encoded as the input-output
weights of hidden layer neurons. At each generation of the evolutionary
process, genotypes selected from the population are decoded into hidden
layer neurons for the purpose of constructing an ANN. This ANN is eval-
uated in a task, and fitness assigned to the genotypes corresponding to
each of the neurons that participated in the ANN. SANE also evolves the
hidden layer positions that genotypes (neurons) are assigned to [102].

Task: What has to be done by an individual controller [83].

Task domain: A set of related tasks.



SAMENVATTING

De titel van dit proefschrift is: Neuro-Evolutie voor Emergente Specialisatie
in Collectief Gedrag Systemen. De belangrijkste bijdrage van het proefschrift
is een nieuwe methode: Collectieve Neuro-Evolutie (CONE) dat werkt binnen
computersimulatie om collectieve gedrag problemen op te lossen. Een collec-
tieve gedrag probleem is een taak die alleen kan worden opgelost door meerdere
agenten (computerprogramma’s) te laten samenwerken. Het onderwerp van dit
proefschrift is gelegen in het veld van neuro-evolutie onderzoek: het snijvlak van
evolutionaire en neurale algoritmiek onderzoek. Gegeven een collectief gedrag
probleem ontwerpt CONE een multi-agent systeem waarin de agenten samen-
werken om een optimale oplossing van het probleem te vinden. CONE werkt
via het aanpassen van agent gedrag en agent interacties tijdens een simulatie,
en gebruikt specialisatie die ontstaat als agenten interacteren. Emergente spe-
cialisatie verwijst naar het gespecialiseerde probleemoplossend gedrag van de
agenten. Met behulp van emergente specialisatie als een probleemoplossend
mechanisme kan CONE beter presteren dan verwante methoden.



BIBLIOGRAPHY

[1] H. Abdel-Rahman. When do cities specialize in production. Reg Sci Urban
Econ, 26(1):1–22, 2001.

[2] A. Agogino. Design and Control of Large Collections of Learning Agents.
Ph. D. Dissertation. Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, USA, 2003.

[3] A. Agogino and K. Tumer. Efficient evaluation functions for multi-rover
systems. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 1–12, New York, USA, 2004. Springer-Verlag.

[4] P. Angeline and J. Pollack. Competitive environments evolve better so-
lutions for complex tasks. In Proceedings of the Fifth International Con-
ference on Genetic Algorithms, pages 264–270, San Mateo, USA, 1993.
Morgan Kaufmann.

[5] T. Arai, E. Pagello, and L. Parker. Editorial: Advances in multi-robot
systems. IEEE Transactions on Robotics and Automation, 18(5):655–661,
2002.

[6] R. Arkin. Behavior based Robotics. MIT Press, Cambridge, USA, 1998.

[7] R. Arkin and T. Balch. Behavior-based formation control for multi-robot
teams. IEEE Transactions on Robotics and Automation, 14(6):926–939,
1999.

[8] R. Axelrod. The Evolution of Cooperation. Basic Books, New York, USA,
1984.

[9] K. Baev. Biological Neural Networks. Birkuser, Berlin, Germany, 1997.

[10] T. Balch. Behavioral Diversity in Learning Robot Teams. PhD Thesis.
College of Computing, Georgia Institute of Technology, Altanta, USA,
1998.

[11] T. Balch. Measuring robot group diversity. In Robot teams: From diversity
to polymorphism, pages 93–135. Peters, Natick, USA, 2002.

[12] T. Balch. Taxonomies of multi-robot task and reward. In Robot teams:
From diversity to polymorphism, pages 23–35. Peters, Natick, USA, 2002.



Bibliography 220

[13] G. Baldassarre, S. Nolfi, and D. Parisi. Evolving mobile robots able to
display collective behavior. Artificial Life, 9(1):255–267, 2003.

[14] J. Blumenthal and G. Parker. Co-evolving team capture strategies for
dissimilar robots. In AAAI Artificial Multi-Agent Learning Symposium,
pages 15–23, Arlinton, Virginia, 2004. AAAI Press.

[15] J. Blumenthal and G. Parker. Competing sample sizes for the co-evolution
of heterogeneous agents. In Proceedings of the 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 1438–1443,
Sendai, Japan, 2004. IEEE Press.

[16] J. Blumenthal and G. Parker. Punctuated anytime learning for evolving
multi-agent capture strategies. In Proceedings of the Congress on Evolu-
tionary Computation, pages 1820–1827, Portland, USA, 2004. IEEE Press.

[17] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, Oxford, England,
1998.

[18] E. Bonabeau, A. Sobkowski, G. Theraulaz, and J. Deneubourg. Adaptive
task allocation inspired by a model of division of labour in social insects.
In Bio-Computing and Emergent Computation, pages 36–45. World Sci-
entific, Singapore, 1997.

[19] E. Bonabeau, G. Theraulaz, and J. Deneubourg. Quantitative study of
the fixed threshold model for the regulation of division of labour in insect
societies. Proceedings of the Royal Society of London B, 263(1):1565–1569,
1996.

[20] B. Bryant. Evolving Visibly Intelligent Behavior for Embedded Game
Agents. PhD thesis. Department of Computer Sciences, The University of
Texas, Austin, Texas, USA, 2006.

[21] B. Bryant and R. Miikkulainen. Neuro-evolution for adaptive teams. In
Proceedings of the Congress on Evolutionary Computation, pages 2194–
2201, Canberra, Australia, 2003. IEEE Press.

[22] M. Bugajska and A. Schultz. Co-evolution of form and function in the
design of autonomous agents: Micro air vehicle project. In Workshop
on Evolution of Sensors, GECCO 2000, pages 240–244, Las Vegas, USA,
2000.

[23] L. Bull. On zcs in multi-agent environments. In Proceedings of Parallel
Problem Solving From Nature, pages 471–480, Amsterdam, The Nether-
lands, 1998. Springer.

[24] L. Bull, T. Fogarty, and M. Snaith. Evolution in multi-agent systems:
Evolving communicating classifier systems for gait in a quadrupedal robot.
In Proceedings of the Sixth International Conference on Genetic Algo-
rithms, pages 382–388, San Mateo, USA, 1995. Morgan Kauffman.



Bibliography 221

[25] L. Busoniu, R. Babuska, and B. DeSchutter. A comprehensive survey of
multiagent reinforcement learning. IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews, 38(2):156–172, 2008.

[26] N. Calderone and R. Page. Genotypic variability in age polyethism and
task specialization in the honey bee. Apis mellifera. Behav. Ecol. Sociobiol,
22(1):17–25, 1988.

[27] C. Campos, G. Theraulaz, E. Bonabeau, and J. Deneubourg. Dynamic
scheduling and division of labor in social insects. Adaptive Behavior,
8(2):83–94, 2001.

[28] A. Cavalcanti and R. Freitas. Nanorobotics control design: A collective
behavior approach for medicine. IEEE Trans. NanoBioSci., 4(6):133–140,
2005.

[29] K. Charles. Ecological Methodology. HarperCollins, New York, USA, 1989.

[30] C. Chen. The leaders and followers among the ants in nest-building.
Physiol. Zool., 10(1):437–455, 1937.

[31] C. Chen. Social modification of the activity of ants in nest-building. Phys-
iol. Zool., 10(1):420–436, 1937.

[32] N. Cole, S. Louis, and C. Miles. Using a genetic algorithm to tune first-
person shooter bots. In Proceedings of the 2004 Congress on Evolutionary
Computation, vol. 1, pages 139–145, Piscataway, USA, 2004. IEEE Press.

[33] D. D’Ambrosio and K. Stanley. Generative encoding for multiagent learn-
ing. In Proceedings of the Genetic and Evolutionary Computation Con-
ference, Atlanta, USA, 2008. ACM Press.

[34] E. De Jong and L. Steels. A distributed learning algorithm for communi-
cation development. Complex Systems, 14(4):315–334, 2003.

[35] K. De Jong. Evolutionary Computation: A Unified Approach. MIT Press,
Cambridge, USA, 2006.

[36] J. Deneubourg, S. Goss, J. Pasteels, D. Fresneau, and J. Lachaud. Self-
organization mechanisms in ant societies (ii): learning in foraging and
division of labor. In From Individual to Collective Behavior in Social
Insects, pages 177–196. Birkhauser, Basel, Switzerland, 1987.

[37] J. Deneubourg, G. Theraulaz, and R. Beckers. Swarm-made architectures.
In Proceedings of the European Conference on Artificial Life, pages 123–
133, Amsterdam, The Netherlands, 1991. Elsevier Academic Publishers.

[38] J. Denzinger and M. Fuchs. Experiments in learning prototypical situa-
tions for variants of the pursuit game. In Proceedings of the Second Inter-
national Conference on Multi-Agent Systems (ICMAS-96), pages 48–55,
Kyoto, Japan, 1996. MIT Press.



Bibliography 222

[39] Dictionary. Dictionary of Biology. House Books Limited, Oxford Univer-
sity Press, Oxford, England, 2000.

[40] R. Drez̃ewski. A model of co-evolution in multi-agent system. In Multi-
Agent Systems and Applications III, pages 314–323, Berlin, Germany,
2003. Springer-Verlag.

[41] R. Drez̃ewski. Co-evolutionary multi-agent system with speciation and
resource sharing mechanisms. Computing and Informatics, 25(4):305–331,
2006.

[42] J. Edmonds. Path, trees, and flowers. Canadian J. Math., 17(1):449–467,
1965.

[43] A. Eiben and J. Smith. Introduction to Evolutionary Computing. Springer-
Verlag, Berlin, Germany, 2003.

[44] J. Elman. Finding structure in time. Cognitive Science, 14(1):179–211,
1990.

[45] R. Eriksson and B. Olsson. Cooperative coevolution in inventory control
optimisation. In Proceedings of the Third International Conference on
Artificial Neural Networks and Genetic Algorithms.

[46] S. Ficici and J. Pollack. Challenges in coevolutionary learning: Armsrace
dynamics, openendedness, and mediocre stable states. In Proceedings of
the Sixth International Conference on Artificial Life, pages 238–247, Cam-
bridge, USA, 1998. MIT Press.

[47] D. Fisher and H. Lipson. Emergent algorithms - a new method for enhanc-
ing survivability in unbounded systems. In Proceedings of the Thirty sec-
ond Annual Hawaii International Conference on System Sciences-Volume
7, pages 7043–7053, Washington, DC, USA, 1999. IEEE Press.

[48] B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes. Cam-
bridge University Press, Cambridge, 1986.

[49] D. Floreano, P. Dürr, and C. Mattiussi. Neuroevolution: from architec-
tures to learning. Evolutionary Intelligence, 1(1):47–62, 2008.

[50] D. Floreano, S. Mitri, S. Magnenat, and L. Keller. Evolutionary conditions
for the emergence of communication in robots. Current Biology, 17(1):514–
519, 2007.

[51] E. Folgado, M. Rincon, J. Alvarez, and J. Mira. A multi-robot surveillance
system simulated in gazebo. In Nature Inspired Problem-Solving Methods
in Knowledge Engineering, pages 202–211. Springer Berlin, Heidelberg,
Germany, 2007.



Bibliography 223

[52] P. Funes, B. Orme, and E. Bonabeau. Evolving emergent group behaviors
for simple humans agents. In Proceedings of the Seven European Con-
ference on Artificial Life, pages 76–89, Berlin, Germany, 2003. Springer-
Verlag.

[53] D. Futuyma and M. Slatkin. In D. Futuyma and M. Slatkin, editors,
Coevolution. Sinauer Associates, Sunderland, Massachusetts, USA, 1983.

[54] G. Gause. The Struggle for Existence. Williams and Wilkins, Baltimore,
USA, 1934.

[55] J. Gautrais, G. Theraulaz, J. Deneubourg, and C. Anderson. Emergent
polyethism as a consequence of increased colony size in insect societies.
Journal of Theoretical Biology, 215(1):363–373, 2002.

[56] F. Gomez. Robust Non-Linear Control Through Neuroevolution. PhD the-
sis. Department of Computer Sciences, The University of Texas, Austin,
Texas, USA, 2003.

[57] F. Gomez and R. Miikkulainen. Incremental evolution of complex general
behavior. Adaptive Behavior, 5(1):317–342, 1997.

[58] F. Gomez and R. Miikkulainen. Solving non-markovian control tasks with
neuroevolution. In Proceedings of the International Joint Conference on
Artificial Intelligence, pages 1356–1361, Stockholm, Sweden, 1999. Mor-
gan Kaufmann.

[59] F. Gomez and R. Miikkulainen. Active guidance for a finless rocket using
neuro-evolution. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 2084–2095, Chicago, USA, 2003. ACM Press.

[60] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Efficient non-linear
control through neuroevolution. InMachine Learning: ECML 2006, pages
654–662, Berlin, Germany, 2006. Springer.

[61] S. Gould. The Structure of Evolutionary Theory. Belknap Press, Cam-
bridge, USA, 2002.

[62] P. Grant. Ecology and Evolution of Darwin’s Finches. Princeton Univer-
sity Press, Princeton, USA, 1986.

[63] J. Grefenstette. Credit assignment in rule discovery systems. Machine
Learning, 3(3):225–246, 1995.

[64] R. Gross, E. Tuci, F. Mondada, and M. Dorigo. Object transport by
modular robots that self-assemble. In Proceedings of the 2006 IEEE In-
ternational Conference on Robotics and Automation, pages 2558–2564,
Los Alamitos, CA, 2006. IEEE Computer Society Press.



Bibliography 224

[65] F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular
encoding and direct encoding for genetic neural networks. In Proceedings
of the First Annual Conference on Genetic Programming, pages 81–89,
Cambridge, USA, 1996. MIT Press.

[66] D. Hawthorne. Genetic linkage of ecological specialization and reproduc-
tive isolation in pea aphids. Nature, 412(1):904–907, 2001.

[67] T. Haynes and S. Sen. Co-adaptation in a team. International Journal of
Computational Intelligence and Organizations, 1(4):1–20, 1996.

[68] T. Haynes and S. Sen. Evolving behavioral strategies in predators and
prey. In Adaptation and Learning in Multi-Agent Systems: Lecture Notes
in Computer Science, pages 113–126. Springer-Verlag, Berlin, Germany,
1996.

[69] L. Hercog and T. Fogarty. Social simulation using a multi-agent model
based on classifier systems: The emergence of vacillating behaviour in ”el
farol” bar problem. In Proceedings of the Fourth International Workshop
on Learning Classifier Systems, pages 362–366, San Francisco, USA, 2001.
Springer.

[70] J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Neural
Computation. Addison-Wesley, Redwood City, 1991.

[71] J. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence.
PhD Thesis. University of Michigan Press, Ann Arbor, USA, 1975.

[72] J. Holland. Properties of the bucket brigade. In Proceedings of the First In-
ternational Conference on Genetic Algorithms, pages 1–7, Mahwah, USA,
1985. Lawrence Erlbaum Associates, Inc.

[73] J. Holland and J. Reitman. Cognitive systems based on adaptive algo-
rithms. Pattern Directed Inference Systems, 7(2):125–149, 1978.

[74] W. Hsu and S. Gustafson. Layered learning in genetic programming for a
cooperative robot soccer problem. In Proceedings of the Fourth European
Conference on Genetic Programming, pages 291–301, Como, Italy, 2001.
Springer-Verlag.

[75] A. Ijspeert, A. Martinoli, A. Billard, and L. Gambardella. Collaboration
through the exploitation of local interactions in autonomous collective
robotics: The stick pulling experiment. Autonomous Robots., 11(2):149–
171, 2001.

[76] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence, 4(1):237–285, 1996.



Bibliography 225

[77] S. Kenny and B. Kirby. Complex systems in language evolution: the
cultural emergence of compositional structure. Artificial Life, 9(4):371–
386, 2003.

[78] S. Kirby and J. Hurford. The emergence of linguistic structure: An
overview of the iterated learning model. In A. Cangelosi and D. Parisi,
editors, Simulating the Evolution of Language, pages 121–148. Springer
Verlag, London, United Kingdom, 2002.

[79] H. Kitano and M. Asada. The robocup humanoid challenge as the millen-
nium challenge for advanced robotics. Advanced Robotics., 13(1):723–736,
2000.

[80] H. Kitano, Y. Kuniyoshi, I. Noda, M. Asada, H. Matsubara, and E. Osawa.
Robocup: A challenge problem for ai. AI Magazine, 18(1):73–85, 1997.

[81] K. Knopp. Singularities. In Theory of Functions Parts I and II, pages
117–139. Dover, New York, USA, 1996.

[82] R. Korf. A simple solution to pursuit games. In Working Papers of
the Eleventh International Workshop on DAI, pages 195–213, Geneva,
Switzerland, 1992. Springer-Verlag.

[83] M. Kreiger and J. Billeter. The call of duty: Self-organized task allocation
in a population of up to twelve mobile robots. Robotics and Autonomous
Systems, 30(1):65–84, 2000.

[84] C. Kube and E. Bonabeau. Cooperative transport by ants and robots.
Robotics and Autonomous Systems: Special Issue on Biomimetic Robots,
1(1):20–29, 1999.

[85] R. Kube and H. Zhang. Collective robotics: from social insects to robots.
Adaptive Behaviour, 2(2):189–218, 1994.

[86] C. Langton. Artificial Life: An Overview. MIT Press, Cambridge, USA,
1995.

[87] R. Levy and J. Rosenschein. Game theoretic approach to distributed
artificial intelligence and the pursuit problem. In Decentralized AI III,
pages 129–146. Springer-Verlag, Kaiserslautern, Germany, 1992.

[88] L. Li, A. Martinoli, and Y. Mostafa. Emergent specialization in swarm
systems. In Lecture notes in computer science: Vol. 2412. Intelligent
data engineering and automated learning, pages 261–266. Springer-Verlag,
Berlin, Germany, 2002.

[89] L. Li, A. Martinoli, and A. Yaser. Learning and measuring specialization
in collaborative swarm systems. Adaptive Behavior., 12(3):199–212, 2004.

[90] H. Lipson and J. Pollack. Automatic design and manufacture of robotic
life forms. Nature, 406(1):974–978, 2000.



Bibliography 226

[91] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler. Co-evolving
soccer softbot team coordination with genetic programming. In RoboCup-
97: Robot Soccer World Cup I, pages 398–411. Springer-Verlag, Berlin,
Germany., 1998.

[92] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and
Gabriel Balan. MASON: A multiagent simulation environment. Simu-
lation, 81(7):517–527, 2005.

[93] D. MacKay. Information Theory, Inference and Learning Algorithms. Uni-
versity of Cambridge Press, Cambridge, United Kingdom, 2003.

[94] B. MacLennan and G. Burghardt. Synthetic ethology and the evolution
of cooperative communication. Adaptive Behavior, 2(2):161–188, 1993.

[95] S. Martello and P. Toth. Linear assignment problems. surveys in combi-
natorial optimization. Ann Discrete Math, 31(1):259–282, 1987.

[96] A. Martinoli, Y. Zhang, P. Prakash, E. Antonsson, and R. Olney. Towards
evolutionary design of intelligent transportation systems. In Eleventh In-
ternational Symposium on New Technologies for Advanced Driver Assis-
tance Systems, pages 283–290, Siena, Italy., 2002. ATA Press.

[97] M. Mataric. Behavior-based control: examples from navigation, learning,
and group behavior. Journal of Experimental and Theoretical Artificial
Intelligence, 9(1):62–78, 1997.

[98] M. Mataric, M. Nilsson, and K. Simsarian. Cooperative multi-robot box-
pushing. In Proceedings of the 1995 IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 3, pages 556–561, Los Alamitos,
USA, 1995. IEEE Computer Society Press.

[99] H. Matsubara, I. Noda, and K. Hiraki. Learning of cooperative actions in
multi-agent systems: a case study of pass and play in soccer. In Adapta-
tion, Co-evolution, and Learning in Multi-agent Systems: Papers from the
1996 AAAI Spring Symposium, pages 63–67, Boston, USA, 1996. AAAI
Press.

[100] O. Miglino, H. Hautop, and S. Nolfi. Evolving mobile robots in simulated
and real environments. Artificial Life, 2(4):417–434, 1995.

[101] F. Mondada, E. Franzi, and P. Ienne. Mobile robot miniaturization: A
tool for investigation in control algorithms. In Proceedings of Third In-
ternational Symposium on Experimental Robotics, pages 501–513, Kyoto,
Japan., 1993. IEEE Press.

[102] D. Moriarty. Symbiotic Evolution of Neural Networks in Sequential Deci-
sion Tasks. PhD thesis. Department of Computer Sciences, The University
of Texas, Austin, Texas, 1997.



Bibliography 227

[103] D. Moriarty and R. Miikkulainen. Forming neural networks through effi-
cient and adaptive coevolution. Evolutionary Computation, 5(1):373–399,
1997.

[104] A. Murciano and J. Millan. Learning signaling behaviors and specializa-
tion in cooperative agents. Adaptive Behavior, 5(1):5–28, 1997.

[105] A. Murciano, J. Millan, and J. Zamora. Specialization in multi-agent
systems through learning. Biological Cybernetics, 76(1):375–382, 1997.

[106] Y. Ng and X. Yang. Specialization, information, and growth: A sequential
equilibrium analysis. Rev Dev Econ, 1(1):257–274, 1997.

[107] S. Nishimura and T. Ikegami. Emergence of collective strategies in a
prey-predator game model. Artificial Life, 3(1):243–260, 1997.

[108] S. Nishimura and I. Takashi. Emergence of collective strategies in a
predator-prey game model. Artificial Life, 3(1):243–260, 1997.

[109] G. Nitschke. Co-evolution of cooperation in a pursuit evasion game. In
Proceedings of the International Conference on Intelligent Robots and Sys-
tems, pages 2037–2042, Las Vagas, USA, 2003. IEEE Press.

[110] G. Nitschke. Designing emergent cooperation: a pursuit-evasion game
case study. Artificial Life and Robotics, 9(4):222–233, 2005.

[111] G. Nitschke. Emergence of cooperation: State of the art. Artificial Life,
11(3):367–396, 2005.

[112] G. Nitschke, M. Schut, and A. Eiben. Collective specialization for evo-
lutionary design of a multi-robot system. In Proceedings of the Second
International Workshop on Swarm Robotics, pages 189–206, Rome, Italy,
September 2006. Springer.

[113] G. Nitschke, M. Schut, and A. Eiben. Emergent specialization in biologi-
cally inspired collective behavior systems. In Intelligent Complex Adaptive
Systems, pages 100–140. IGI Publishing, New York, USA, 2007.

[114] G. Nitschke, M. Schut, and A. Eiben. Emergent specialization in the
extended multi-rover problem. In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 2007), pages 100–106, Singapore, 2007.
IEEE Press.

[115] G. Nitschke and D. van Krevelen. Neuro-evolution for a gathering and
collective construction task. In Conor Ryan, editor, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2008). ACM
Press, 2008.

[116] I. Noda and P. Stone. The robocup soccer server and cmunited clients:
Implemented infrastructure for mas research. Autonomous Agents and
Multi-Agent Systems, 7(1):101–120, 2001.



Bibliography 228

[117] C. Noirot and J. Pasteels. Ontogenetic development and the evolution of
the worker caste in termites. Experientia., 43(1):851–860, 1987.

[118] S. Nolfi. Evolving non-trivial behavior on autonomous robots: Adaptation
is more powerful than decomposition and integration. In Evolutionary
Robotics 97 - From Intelligent Robotics to Artificial Life, pages 243–254.
AAI Books, Ottawa, Canada, 1997.

[119] S. Nolfi. Using emergent modularity to develop control system for mobile
robots. Adaptive Behavior, 5(1):343–363, 1997.

[120] S. Nolfi. Evorobot 1.1 User Manual. Technical Report. Institute of Cog-
nitive Sciences, National Research Council, Rome, Italy, 2000.

[121] S. Nolfi, G. Baldassarre, and D. Parisi. Evolution of collective behaviour
in a team of physically linked robots. In Applications of Evolutionary
Computing, pages 581–592. Springer Verlag, Heidelberg, Germany, 2003.

[122] S. Nolfi, J. Deneubourg, D. Floreano, L. Gambardella, F. Mondada, and
M. Dorigo. Swarm-bots: Swarm of mobile robots able to self-assemble
and self-organize. Ecrim News, 53(1):25–26, 2003.

[123] S. Nolfi and D. Floreano. Co-evolving predator and prey robots: Do arm
races arise in artificial evolution. Artificial Life, 4(4):311–335, 1999.

[124] S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology, Intelli-
gence, and Technology of Self-Organizing Machines. MIT Press, Cam-
bridge, USA, 2000.

[125] S. Nolfi and D. Parisi. Learning to adapt to changing environments in
evolving neural networks. Adaptive Behavior, 1(5):75–98, 1997.

[126] S. O’Donnell. Effects of experimental forager removals on division of
labour in the primitively eusocial wasp polistes instabilis. Behaviour,
135(2):173–193, 1998.

[127] S. ODonnell and R. Jeanne. Forager specialization and the control of nest
repair in polybia occidentalis olivier (hymenoptera: Vespidae). Behavioral
Ecology and Sociobiology, 27(1):359–364, 1990.

[128] M. O’Riain, J. Jarvis, R. Alexander, R. Buffenstein, and C. Peeters. Mor-
phological castes in a vertebrate. Proceedings of the National Academy of
Sciences of the United States of America., 97(24):13194–13197, 2000.

[129] L. Panait and S. Luke. Cooperative multi-agent learning: The state of the
art. Autonomous Agents and Multi-Agent Systems, 3(11):387–434, 2005.

[130] G. Parker and P. Nathan. Evolving sensor morphology on a legged robot
in niche environments. In World Automation Congress 2006, pages 1–10,
Budapest, Hungary, 2006. IEEE Press.



Bibliography 229

[131] A. Perez-Uribe, D. Floreano, and L. Keller. Effects of group compo-
sition and level of selection in the evolution of cooperation in artificial
ants. In Advances of Artificial Life: Proceedings of the Seventh European
Conference on Artificial Life, pages 128–137, Dortmund, Germany, 2003.
Springer.

[132] G. Peterson. A day of great illumination: B. f. skinner’s discovery of
shaping. Journal of the Experimental Analysis of Behavior, 82(3):317–
328, 2004.

[133] R. Pfeifer, F. Iida, and G. Gomez. Designing intelligent robots: On the im-
plications of embodiment. Journal of Robotics Society of Japan, 24(7):9–
16, 2006.

[134] J. Polechovà and N. Barton. Speciation through competition: a critical
review. Evolution, 59(6):1194–1210, 2005.

[135] J. Polechovà and D. Storch. Ecological niche. In Encyclopedia of Ecology.
Elsevier, Amsterdam, The Netherlands, 2005.

[136] M. Potter. The Design and Analysis of a Computational Model of Co-
operative Coevolution. Department of Computer Science, George Mason
University, Fairfax, USA, 1997.

[137] M. Potter and K. De Jong. Evolving neural networks with collaborative
species. In Proceedings of the Summer Computer Simulation Conference,
pages 340–345. The Society of Computer Simulation, 1995.

[138] M. Potter and K. De Jong. Cooperative coevolution: An architecture for
evolving coadapted subcomponents. Evolutionary Computation, 8(1):1–
29, 2000.

[139] M. Potter, K. De Jong, and J. Grefenstette. A co-evolutionary approach to
learning sequential decision rules. In Proceedings of the Sixth International
Conference on Genetic Algorithms, pages 366–372, San Franciso, USA,
1995. Morgan Kaufmann.

[140] M. Potter, L. Meeden, and A. Schultz. Heterogeneity in the coevolved
behaviors of mobile robots: The emergence of specialists. In Proceedings of
the International Joint Conference on Artificial Intelligence, pages 1337–
1343, Seattle, USA, 2001. AAAI Press.

[141] M. Quinn, L. Smith, G. Mayley, and P. Husbands. Evolving controllers
for a homogeneous system of physical robots: Structured cooperation
with minimal sensors. Philosophical Transactions of the Royal Society
of London, Series A: Mathematical, Physical and Engineering Sciences,
361(1):2321–2344, 2003.

[142] M. Resnick. Turtles, Termites, and Traffic Jams: Explorations in Mas-
sively Parallel Microworlds. MIT Press, Cambridge, USA, 1997.



Bibliography 230

[143] T. Revello and R. McCartney. Generating war game strategies using a
genetic algorithm. In Proceedings of the 2002 Congress on Evolutionary
Computation, pages 1086–1091, Piscataway, USA, 2002. IEEE Press.

[144] C. Reynolds. Flocks, herds and schools: A distributed behavioral model.
Computer Graphics, 21(4):25–36, 1987.

[145] S. Robson and J. Traniello. Key individuals and the organization of la-
bor in ants. In Information Processing in Social Insects, pages 239–259.
Springer Verlag, Basel, Switzerland, 1999.

[146] C. Rosin and R. Belew. New methods for competitive coevolution. Evo-
lutionary Computation, 5(1):1–29, 1997.

[147] S. Russell and P. Norvig. Artificial Intelligence, A Modern Approach.
Second Edition. University of Michigan Press, Ann Arbor, USA, 2003.

[148] M. Saptharishi, C. Oliver, C. Diehl, K. Bhat, J. Dolan, A. Trebi-Ollennu,
and P. Khosla. Distributed surveillance and reconnaissance using multi-
ple autonomous atvs: Cyberscout. IEEE Transactions on Robotics and
Automation, 18(5):826–836, 2002.

[149] A. Schultz and M. Bugajska. Co-evolution of form and function in the
design of autonomous agents: Micro air vehicles project. In Proceedings
of the Workshop on Evolution of Sensors in Nature, Hardware, and Sim-
ulation, GECCO, pages 154–166, Chicago, 2000. AAAI Press.

[150] C. Schultz and L. Parker. In Multi-robot Systems: From Swarms to In-
telligent Automata. Kluwer Academic Publishers, Washington DC, USA,
2002.

[151] H. Seligmann. Resource partition history and evolutionary specialization
of subunits in complex systems. Biosystems, 51(1):31–39, 1999.

[152] O. Sigaud and W. Stewart. Learning classifier systems: a survey. Soft
Computing, 11(11):1065–1078, 2007.

[153] K. Sims. Evolving 3d morphology and behavior by competition. In Ar-
tificial Life IV: Proceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems, pages 28–39, Cambridge,
USA, 2004. MIT Press.

[154] Z. Skolicki and K. De Jong. The influence of migration sizes and intervals
on island models. In Proceedings of the 2005 Genetic and Evolutionary
Computation Conference, pages 1295–1302. ACM Press, 2005.

[155] A. Smith. An Inquiry into the Nature and Causes of the Wealth of Nations.
Fifth edition. Methuen and Co., Ltd. First published: 1776., London,
United Kingdom, 1904.



Bibliography 231

[156] S. Smith. A Learning System Based on Genetic Adaptive Algorithms. PhD
Thesis. University of Pittsburgh Press.

[157] D. Solow and J. Szmerekovsky. Mathematical models for explaining the
emergence of specialization in performing tasks. Complexity, 10(1):37–48,
2004.

[158] K. Stanley. Efficient Evolution of Neural Networks Through Complex-
ification. Ph. D. Dissertation. Department of Computer Sciences, The
University of Texas, Austin, USA, 2004.

[159] K. Stanley. Compositional pattern producing networks: A novel abstrac-
tion of development. Genetic Programming and Evolvable Machines: Spe-
cial Issue on Developmental Systems, 8(2):131–162, 2007.

[160] K. Stanley, B. Bryant, and R. Miikkulainen. Evolving neural network
agents in the nero video game. In Proceedings of the IEEE 2005 Sympo-
sium on Computational Intelligence and Games, pages 182–189, Piscat-
away, USA, 2005. IEEE Press.

[161] K. Stanley, B. Bryant, and R. Miikkulainen. Real-time neuro-evolution
in the nero video game. IEEE Transactions Evolutionary Computation,
9(6):653–668, 2005.

[162] K. Stanley, D’Ambrosio, and J. Gauci. Hypercube-based indirect encoding
for evolving large-scale neural networks. Artificial Life, To appear, 2008.

[163] K. Stanley and R. Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary Computation., 10(2):99–127, 2002.

[164] L. Steels and F. Kaplan. Aibo’s first words: The social learning of language
and meaning. Evolution of Communication, 4(1):3–32, 2001.

[165] W. Stolzmann. Anticipatory classifier systems. In J. Koza, W. Banzhaf,
K. Chellapilla, K. Deb, M. Dorigo, D. Fogel, M. Garzon, D. Goldberg,
H. Iba, and R. Riolo, editors, Genetic Programming, pages 658–664. Mor-
gan Kaufmann Publishers, San Francisco, USA, 1998.

[166] P. Stone and M. Veloso. Using decision tree confidence factors for multi-
agent control. In Proceedings of the Second International Conference on
Autonomous Agents, pages 110–116, Minneapolis, USA, 1998. ACM Press.

[167] H. Sugie, Y. Inagaki, S. Ono, H. Aisu, and T. Unemi. Placing objects
with multiple mobile robotsmutual help using intention inference. In Proc.
of the 1995 IEEE Int. Conf. on Robotics and Automation, vol. 2, pages
2181–2186, Los Alamitos, USA, 1995. IEEE Computer Society Press.

[168] R. Sutton and A. Barto. An Introduction to Reinforcement Learning. John
Wiley and Sons, Cambridge, USA, 1998.



Bibliography 232

[169] D. Tarapore, D. Floreano, and L. Keller. Influence of the level of polyandry
and genetic architecture on division of labour. In The Tenth International
Conference on the Simulation and Synthesis of Living Systems (Alife X),
pages 358–364, Cambridge, USA, 2006. MIT Press.

[170] G. Theraulaz and E. Bonabeau. Coordination in distributed building.
Science, 269(1):686–688, 1995.

[171] G. Theraulaz, E. Bonabeau, and J. Deneubourg. Fixed response thresh-
olds and the regulation of division of labor in insect societies. Bulletin of
Mathematical Biology, 60(1):753–807, 1998.

[172] G. Theraulaz, E. Bonabeau, and J. Deneubourg. Response threshold re-
inforcement and division of labour in insect societies. Proceedings of the
Royal Society of London B, 265(1):327–332, 1998.

[173] G. Theraulaz, J. Gervet, and S. Semenoff. Social regulation of foraging
activities in polistes dominulus christ: a systemic approach to behavioural
organization. Behaviour, 116(1):292–320, 1991.

[174] A. Thompson, I. Harvey, and P. Husbands. Unconstrained evolution and
hard consequences. In Towards Evolvable Hardware: The evolutionary en-
gineering approach, volume 1062 of LNCS., pages 135–165, Berlin, Ger-
many, 1996. Springer-Verlag.

[175] V. Trianni, R. Gross, T. Labella, E. Sahin, and M. Dorigo. Evolving
aggregation behaviors in a swarm of robots. In Advances in Artificial
Life: Proceedings of the Seventh European Conference on Artificial Life,
pages 865–874. Springer-Verlag, Dortmund, Germany, 2003.

[176] M. Waibel, D. Floreano, S. Magnenat, and L. Keller. Division of labor and
colony efficiency in social insects: effects of interactions between genetic
architecture, colony kin structure and rate of perturbations. Proceedings
of the Royal Society B, 273(1):1815–1823, 2006.

[177] R. Watson, S. Ficici, and J. Pollack. Embodied evolution: A response
to challenges in evolutionary robotics. In Eighth European Workshop on
Learning Robots, pages 14–22. Springer Verlag, Lausanne, Switzerland,
1999.

[178] R. Watson, S. Ficici, and J. Pollack. Embodied evolution: Embodying an
evolutionary algorithm in a population of robots. In 1999 Congress on
Evolutionary Computation, pages 335–342, Washington D.C., USA, 1999.
IEEE Press.

[179] R. Watson, S. Ficici, and J. Pollack. Embodied evolution: Distributing
an evolutionary algorithm in a population of robots. Robotics and Au-
tonomous Systems, 39(1):1–18, 2002.



Bibliography 233

[180] T. Wenseleers, F. Ratnieks, and J. Billen. Caste fate conflict in swarm-
founding social hymenoptera: an inclusive fitness analysis. Evolutionary
Biology., 16(1):647–658, 2003.

[181] J. Werfel, Y. Bar-Yam, and R. Nagpal. Building patterned structures
with robot swarms. In International Joint Conference on Artificial Intel-
ligence, pages 1495–1502, Edinburgh, Scotland, United Kingdom, 2005.
AAAI Press.

[182] J. Werfel, Y. Bar-Yam, D. Rus, and R. Nagpal. Distributed construc-
tion by mobile robots with enhanced building blocks. In IEEE Inter-
national Conference on Robotics and Automation, pages 2787–2794, Or-
lando, Florida, USA, 2006. IEEE Press.

[183] J. Werfel and R. Nagpal. Extended stigmergy in collective construction.
IEEE Intelligent Systems, 21(2):20–28, 2006.

[184] S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone. Evolving keep-away
soccer players through task decomposition. In Proceeding of the Genetic
and Evolutionary Computation Conference, pages 356–368, Chicago, 2003.
AAAI Press.

[185] Darrell Whitley, Soraya B. Rana, and Robert B. Heckendorn. Island model
genetic algorithms and linearly separable problems. In Evolutionary Com-
puting Workshop, pages 109–125. Morgan Kaufmann, 1997.

[186] R. Wiegand. Applying diffusion to a cooperative coevolutionary model.
In Proceedings of the Fifth International Conference on Parallel Prob-
lem Solving from Nature, pages 560–569, London, United Kingdom, 1998.
Springer-Verlag.

[187] R. Wiegand. An Analysis of Cooperative Coevolutionary Algorithms. PhD.
Thesis. George Mason University Press, George Mason University, Fairfax,
USA, 2004.

[188] S. Wilson. Knowledge growth in an artificial animat. In Proceedings of
the First international Conference on Genetic Algorithms, pages 16–23,
Mahwah, USA, 1985. Lawrence Erlbaum Associates, Inc.

[189] S. Wilson. Zcs: A zeroth-level classifier system. Evolutionary Computa-
tion, 2(1):1–18, 1994.

[190] M. Wineberg and F. Oppacher. The underlying similarity of diversity mea-
sures used in evolutionary computation. In Proceedings of the Fifth Ge-
netic and Evolutionary Computation Conference, pages 1493–1504, Berlin,
2003. Springer.

[191] B. Woodward, J. Winn, and F. Fish. Morphological specializations of
baleen whales associated with hydrodynamic performance and ecological
niche. Journal of Morphology, 267(11):1284–1294, 2006.



Bibliography 234

[192] J. Wu, Z. Di, and Z. Yang. Division of labor as the result of phase tran-
sition. Physica A, 7(1):323–663, 2003.

[193] G. Yannakakis, J. Levine, and J. Hallam. An evolutionary approach for in-
teractive computer games. In Proceedings of the 2004 Congress on Evolu-
tionary Computation, pages 986–993, Piscataway, USA, 2004. IEEE Press.

[194] X. Yao. Evolutionary artificial neural networks. International Journal of
Neural Systems, 4(3):203–222, 1993.

[195] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423–1447, 1999.

[196] C. Yong and R. Miikkulainen. Cooperative coevolution of multi-agent sys-
tems. Technical Report AI01-287. Department of Computer Sciences, The
University of Texas, Austin, USA, 2001.

[197] C. Yong and R. Miikkulainen. Coevolution of Role-Based Cooperation in
Multi-Agent Systems. Technical Report AI01-287. Department of Com-
puter Sciences, The University of Texas, Austin, USA, 2007.

[198] L. Young, E. Aiken, G. Briggs, V. Gulick, and R. Mancinelli. Rotorcraft
as mars scouts. In Proceeding of the IEEE Aerospace Conference, pages
4–12, Big Sky, USA, 2002. IEEE Press.

[199] L. Young, G. Pisanich, and C. Ippolito. Aerial explorers. In Proceeding
of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, pages 4–12,
Reno, Nevada, USA, 2005. AIAA Press.

[200] L. Young, G. Pisanich, C. Ippolito, and R. Alena. Aerial vehicle surveys of
other planetary atmospheres and surfaces: imaging, remote-sensing, and
autonomy technology requirements. In Proceedings of the SPIE, Real-
Time Imaging IX, Volume 5671, pages 183–199, Reno, Nevada, USA,
2005. SPIE Press.

[201] N. Zaera, D. Cliff, and J. Bruten. (Not) Evolving Collective Behaviors
in Synthetic Fish (Tech. Rep.). Hewlett-Packard Laboratories, Bristol,
England, 1996.

[202] Y. Zhang, A. Martinoli, and E. Antonsson. Evolutionary design of a col-
lective sensory system. In The 2003 AAAI Spring Symposium on Com-
putational Synthesis, pages 283–290, Stanford, USA, 2003. AAAI Press.



INDEX

Agogino, 78
ANN, see Artificial Neural Network
Artificial collective behavior, 9
Artificial collective behavior systems,

15
Artificial evolution, 9
Artificial life, 9
Artificial Neural Network, 8

Behavioral specialization, 9, 17, 154
Behavioral specialization difference

metric, 12, 154

CCGA, see Cooperative Co-evolving
Genetic Algorithm

Collective behavior case studies, 155
Collective behavior models of spe-

cialization, 23
Collective behavior tasks, 8, 17
Collective communication, 18
Collective construction, 18
Collective gathering, 18
Collective Neuro-Evolution, 8, 36,

154
Collective resource distribution and

allocation, 18
Competitive co-evolution, 26
Complex adaptive systems, 8
CONE, see Collective Neuro-Evolution

Adaptation of algorithmic pa-
rameters, 47

Adapting controller size, 48
Behavioral specialization differ-

ence metric, 36
Evaluation, 42
Evolutionary process, 49
Genetic similarity threshold, 39
Genotype, 38
Genotype difference metric, 36

Plasticity, 157
Related methods, 50
Representation, 38
Selection, 44
Specialization, 39
Specialization similarity thresh-

old, 41
Variation, 44

Controller design, 10, 13, 156
Cooperative co-evolution, 10, 26, 155
Cooperative Co-evolving Genetic Al-

gorithm, 34

Difference metrics, 12
Division of labor, 24

Emergent specialization, 9, 17, 155
Enforced Sub-Populations, 32
ESP, see Enforced Sub-Populations
Evolutionary computation, 9
EvoRobot Khepera simulator, 54

GACC, see Gathering and Collec-
tive Construction

Game theory, 24
Gathering and Collective Construc-

tion, 14, 118, 154
Atomic object, 118
Caste lesion study, 147
Complex object, 118
Complex object construction, 120,

123
Construction zone, 118, 120
Cooperative transport, 119
Discussion of results, 145
Evolution of collective behav-

ior, 136
Evolution phase, 140

235



Index 236

Evolving teams in simple envi-
ronments, 141

Experimental design, 135
Fitness functions, 135
Home area, 118, 120
Neuro-evolution parameters, 136
Obstacles, 122
Performance measure, 118
Robot controller, 132
Robot detection sensors, 124
Robot movement actuators, 130
Robots, 118
Shaping of teams in complex en-

vironments, 141
Simulation environment, 120
Simulation parameters, 136
Specialization, 119
Task results, 139
Testing phase, 140
The role of difference metrics,

152
Validating the role of behavioral

specialization, 150
GDM, see Genotype difference met-

ric
General specialization metric, 156
Genotype difference metric, 154
Gomez, 13

HetCNE, see Heterogenous Conven-
tional Neuro-Evolution

Heterogenous collective behavior sys-
tems, 20

Heterogenous Conventional Neuro-
Evolution, 53

HomCNE, see Homogenous Conven-
tional Neuro-Evolution

Homogenous collective behavior sys-
tems, 20

Homogenous Conventional Neuro-Evolution,
53

Hypercube-based Neuro-Evolution of
Augmenting Topologies, 50

HyperNEAT, see Hypercube-based
Neuro-Evolution of Augment-
ing Topologies, 157

Learning classifier systems, 27

MESP, see Multi-Agent ESP
Moriarty, 13
Morphological specialization, 10, 15,

17
Moving in formation and coopera-

tive transportation, 19
Multi-agent computer games, 18
Multi-Agent ESP, 32
Multi-robot systems, 9
Multi-rover, 14, 78, 154

Analysis, 104
Analysis of evolution in com-

plex environments, 105
Behavioral specialization, 104
Canals, 80
Caste lesion study, 106
Collective behavior, 78, 80
Complex environments, 98
Controller, 86
Environments appropriate for be-

havioral specialization, 95
Evolution phase, 94
Experimental design, 88
Experimental setups for neuro-

evolution methods, 93
Extended complex environments,

100
Lander, 78, 79
Neuro-evolution parameters, 90
Red rock, 78
Red rock detection sensors, 83
Red rock distribution, 80
Red rock type, 79
Role of difference metrics, 115
Rover, 78
Rover detection sensors, 84
Rovers, 83
Simulation environment, 79
Simulation parameters, 90
Specialization, 87
Task results, 94
Team fitness evaluation, 89
Testing phase, 94



Index 237

Validating the role of behavioral
specialization, 107

NEAT, see Neuro-Evolution of Aug-
menting Topologies, 157

Neural computation, 9
Neuro-evolution, 10, 28
Neuro-Evolution of Augmenting Topolo-

gies, 50
Non-emergent specialization, 17

Object, see Atomic Object

Potter, 13
Predator, 53

Controller, 54
Prey, 53

Controller, 54
Prey capture time, see Fitness func-

tion
Pursuit-evasion, 14, 19, 53, 154

Evolution phase, 57
Evolved prey-capture behaviors,

62
Experimental setup, 57
Experiments, 61
Fitness function, 61
Measuring behavioral specializa-

tion, 72
Parameters, 57
Prey-capture behavior lesion study,

75
Reverse engineering observed preda-

tor behaviors, 70
Role of difference metrics, 68
Shaping prey behavior, 58
Specialized behaviors analysis,

70
Task performances, 62
Testing phase, 58
Validating the role of behavioral

specialization, 73

Reinforcement learning, 23
RoboCup soccer, 19

SDM, see Behavioral specialization
difference metric

Simulator, 13
Specialization, 8, 15
Specialization metrics, 20
Specialization types, 16


